QUANTIFYING AND DEMONSTRATING BENEFITS OF USE OF MET. PRODUCTS AND SERVICES

Contents

- Why demonstrate benefits?
- Review of case studies evaluating & demonstrating benefits
- Setting up a system for demonstrating the socio-economic benefits
 - Setting measurable metrics for assessing impact of information.
 - Quantify the corresponding socio-economic benefits

Why demonstrate benefits?

- Improve understanding leading to enhanced funding
- Trigger up-scaling:
 - Help in steering diversity of product/ services development
 - Provide the stimulus for further work/influence
- Useful in representing a decision process in a simplified manner in order to develop tractable models

Case studies

- Value to the US agricultural sector of improved ENSO forecasts in the south eastern United States;
- Value of improved ENSO prediction to all US agriculture;
- Economic benefits of the public weather forecasts in Sydney metropolitan area in Australia;

Case studies.....cont

- Value of public weather forecast services to households in the province of Ontario in Canada
- Economic value of current and improved weather forecasts in the US household sector
- Economic and social benefits of meteorology and climatology in Switzerland
- Socio-economic benefits of meteorological information in the Agricultural sector in Kenya

Coverage & Author Value to the Agricultural sector in South Eastern US of improved ENSO forecast [Adams et al 1995]	Finding
Value of improved ENSO prediction to all US agriculture [Solow et al (1999)]	

househol	of public forecasts to ds in Sydney and Lellyett		
		Contingent Valuation	
[Brown,20	002]		

Value to the	CVM	WTP for free information US\$54-362 million
Agriculture and	Normative	Benefit of Seasonal forecast US\$ 1 million
Energy sectors in	method	Benefit in Energy (water) sector US\$ 98
Switzerland		million
Frei, 2009	u	Benefit in Energy (Electricity) sector US\$ 4 million
	u	Estimated Benefit cost ratio 5:1
Value to the	CVM	Benefit of Seasonal forecast US\$ 16-102
Agriculture		million
sector in Kenya		Estimated Benefit cost ratio 4:1
[ICPAC, 2010]		
[,,,		

- B/C Ratio Mean MAM
- B/C Ratio Mean SOND
- B/C Ratio MAM 2010
- B/C Ratio SOND 2009

SYSTEM SETUP: measurable metrics

- Baseline survey of the chosen sector:
 - E.g. Agriculture, Marine, Transport, etc
 - Establish existing level of usage of MPSs
- Design and elaboration of tools to
 - monitor,
 - assess and
 - report

the value of met information and products.

Metrics ... cont

- Integrated Participatory involvement:
 - Inception workshop to discuss the project implementation with users for their input and involvement
 - training workshop for key and other users involved in the demonstration project (e.g. farmers, fishermen, etc)
 - Project monitoring, evaluation and assessment.
 - National Stakeholders meeting for discussion of results

DESIGN AND ADOPTION OF METHODS

Quantification

Basis of methodologies

- Decision theory
 - Prescriptive (Contingency Valuation Method)
 - Willingness to Pay
 - Behaviour response (BRM)
- Game theory

Behavior response model

- Step 1: define the decision alternatives and determine that the particular decision
- Step 2: identify the goals and objectives of the user.
- Step3: identify all the decision-relevant info available to the user.
- Step 4: develop a model describing the relationship between available info & the decision of the user.
- Step 5: evaluate the model and ensure that it adequately describes the behaviour of the user.
- Step 6 : use of the model to determine the effect of using the meteorological information.

Figure 1: A Generalized Agent

Figure 2: The basic environment-goal-decision relationship

Figure 3: The agent-environment-agent relationship

Figure 4: Model Components.

Conclusion

- Contribution to the alleviation of extreme poverty possible through demonstration of the benefits of using MPSs
- Both micro and Macro levels are involved
- Public private partnerships established and nurtured