Societal Impacts and Economic Benefits of Weather Information (Collaborative Program)

Jeffrey K. Lazo

Societal Impacts Program National Center for Atmospheric Research Boulder, Colorado, USA

Task Force on Social and Economic Applications of Public Weather Services

15 May 2006

Outline

Assessing communication, perception, use, and value of weather forecasts US Sector Sensitivity Assessment Household Valuation Study WAS*IS SIP Information Resources Research Topics

Value of
Weather
Borecastsvalue chain

data → information value of information

Characteristics of Weather Information

- temporal
- spatial
- information content
- public goods?
 - rival my use keeps you from using it?
 - exclusion possible to prevent you using it without paying for it?
- challenge to provide optimal information "optimally"
 - structure of information provision

Value of Weather

value of weather impacts
value of weather forecasts
value of improved weather forecasts

US Sector Sensitivity Assessment

Conceptual Approach

Sensitivity Analysis: Using econometric models, we hold economic inputs constant, and use 70 years of weather data to see how economic output varies as a result of variation in weather

National Sensitivity

(Billions \$2000)

Sector	GDP	Range	%Range
Agriculture	127.6	15.4	12.09%
Wholesale trade	601.5	13.3	2.20%
Retail trade	761.5	17.3	2.27%
Finance, Insurance, Real Estate	1,639.3	132.5	8.08%
Communications	237.3	11.1	4.68%
Utilities	212.9	14.9	6.98%
Transportation	276.1	9.8	3.53%
Manufacturing	1,524.8	125.1	8.20%
Construction	374.5	17.7	4.71%
Mining	102.0	14.7	14.38%
Services	1,834.9	60.5	3.30%
Total National	7,692.4	258.7	3.36%

Household Valuation Study

Perceptions - Importance of Weather Forecast Characteristics

Characteristic	Mean	SD	Kruskal-Wallis Test, χ^2 (prob H _o)
Chance of rain, snow, or hail	4.30	0.82	12.44
Amount of rain, snow, or hail	4.02	0.96	21.73 (0.01)
High temperature	3.85	1.01	9.77 (0.28)
Low temperature	3.74	1.06	10.69 (0.22)
How windy it will be	3.28	1.08	7.60 (0.47)
How cloudy it will be	2.74	1.08	14.38 (0.07)
Air pressure	2.21	1.13	10.81 (0.21)

Household Valuation Study

non-market valuation survey based valuation "ordinary" weather

17 If you had to choose, would you prefer Program A or Program B? Check one box at the bottom.

	Program A ▼	Program B ▼
FREQUENCY OF UPDATES (Currently 4 times a day)	9 times a day	12 times a day
ACCURACY OF ONE-DAY FORECASTS (Currently correct about 80% of the time)	correct 90% of the time	correct 85% of the time
ACCURACY OF MULTIDAY FORECASTS (Currently accurate up to 5 days into the future)	accurate up to 14 days in the future	accurate up to 14 days in the future
GEOGRAPHIC DETAIL (Currently to 30 by 30 miles)	to 7 by 7 miles	to 30 by 30 miles
ADDED YEARLY COST TO YOUR HOUSEHOLD	\$15 more	\$8 more
Check (\checkmark) the box for the program you prefer \rightarrow		

18

Would you rather the NWS continue with current weather forecast technologies at current budget levels or would you rather have the program you chose above (A or B)? *Circle the number indicating your preference.*

- 1. I would rather have no change in weather forecasting and no increase in costs to my household than have the program that I chose above.
- 2. Make the improvements in the program I that chose above and pay the amount indicated.

Household Valuation Study

Preliminary Results Sample = 381

Willingness to pay for maximum improvement \$15.27 / household /yr

Tobit Model on WTP	
Intercept	-2.601
Age (Years)	0.152 ***
Income	0.000 ***
Education (Years)	-0.493 ***
Gender	-0.390
Ethnicity	0.059
% Work Outside	-0.006
% Leisure Outside	0.036 **
Discretionary Use	2.087 ***
Non-discretionary Use	-1.873 ***
Weather Variability	1.640 ***
Frequency	-0.022
One Day	0.437 ***
Multiday	-0.013
Geographic	-0.137 ***

WAS*IS

workshops to integrate weather and social science

WAS*IS I – Nov/Mar 2005/6 - 23 participants

- WAS*IS Norman 40 participants.
- Summer 2006 WAS*IS 35 participants.

 empower practitioners, researchers, and stakeholders to forge new relationships and use new tools for more effective socioeconomic applications and evaluations of weather products

WORKSHOPS

weather & society * integrated studies

Changing from what WAS to what IS the future of integrated weather studies

WAS*IS Topics Challenges for integrating weather and social science Communicating and collaborating with users and decision-makers **Communicating with the media Decision analysis Economics GIS (Geographic Information Systems) Lessons from Hurricane Katrina Public education and outreach Qualitative research methods Survey research methods** Warnings and false alarms

SIP Information Resources SIP Home page <u>www.sip.ucar.edu</u> Digital Library Societal Aspects Web page Extreme Weather Sourcebook Society and Weather Newsletter Society and Weather Newsgroup

THORPEX SERA

Societal and Economic Research and Applications

- Communicating uncertainty
 - Decision analysis
 - Risk analysis
- User relevant verification
 - Development of verification methods for ensembles
 - Survey instruments
- Marginal benefits of high impact forecasts
- Societal impacts (cost-benefit) of THORPEX forecast improvements
- International equity & GIFS
- Cost of THORPEX programmes
- Develop protocol for user engagement
- User requirements / engagement (trust)
- Beta-test products
- Use of current products

Capacity Building

- Database weather impacts / forecasts
- Developing country training

Applications

Research

Some Issues

quantitative precipitation forecasts
communicating uncertainty
non-linear warning systems
improving forecasts not same as improving value of forecasts
communication
perception (understanding)
use (behavioral response)