## Application of Forecast Probabilities: SA input

Eugene Poolman SAWS <br> \section*{\title{
Web-based Ensemble <br> \section*{\title{
Web-based Ensemble prediction product
}} prediction product
}}

## South African Weather Service

| Date of forecast | Probability of Rainfall > lmm | $\begin{aligned} & \text { Probability of } \\ & \text { Rainfall > } \\ & 8.5 \mathrm{~mm} \end{aligned}$ | Probability of $\mathbf{2 4 H}$ Tx change $>2 \mathrm{deg}$ | Probability of $\mathbf{2 4 H}$ Tn change $>2$ deg | Sea-level <br> Pressure | 500 hPa Heights | Thickness Probabilities |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Thursday 22 Jun Dase 1 |  |  |  |  |  |  | cos |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| Tuesday 27 Jun <br>  |  |  |  |  |  |  |  |

## Forecast for 13 July: 6 days in advance

Prab of $850-500 \mathrm{hPa}$ Thick < $4100 \&>4200 \mathrm{gpm}$


500 hPa Heights (uncertainty shaded)

Probability of Tx 24-H change greater than 2 deg


Strong stemal Medfum signal Weak Signal No Signal

## Benefits of ensemble prediction

- It provides forecasters
- with a set of 23 possible future scenarios,
- that can be used to compute the probabilities of possible future weather events.
- It allowed forecasters to extend reasonable predictability far beyond the traditional 2 day forecasts
- SAWS uses ensemble products to issue advisories for the next 3-7 days on hazardous weather


## Rainfall probablilities on TV



- Severe Weather Forecasting in SADC::\%:
- Special products from Global centres to RSMC-Pretoria
- RSMC prepares guidance forecasts for next 5 days and disseminates daily to 5 NMCs
- NMCs use guidance forecast in preparing warnings when appropriate to disaster management authorities






## Expected Total Rainfall for the period September-October-November 2007

AREA 1:

| $40 \%$ chance that the total rainfall for this period will be ABOVE-normal. |
| :--- | :--- |
| $35 \%$ chance that the total rainfall for this period will be nomal. |
| $25 \%$ chance that the total rainfall for this period will be BELOW-nomal. |
| AREA 2 : |
| $20 \%$ chance that the total rainfall for this period will be ABOVE-normal. |
| $35 \%$ chance that the total rainfall for this period will be nomal. |
| $45 \%$ chance that the total rainfall for this period will be BELOW-nomal. |
| AREA 3 : |
| $35 \%$ chance that the total rainfall for this period will be ABOVE-normal. |
| $40 \%$ chance that the total rainfall for this period will be nomal. |
| $25 \%$ chance that the total rainfall for this period will be BELOW-nomal. |



Please send comments to longrange (ave athersa.co.za

## Expected Total Rainfall for the period Oct-Nov-Dec 2007



Probability (\%)

Below-normal | 6055 | 50 | 45 | 40 |
| :---: | :---: | :---: | :---: |




Probability of ABOVE for SEPTEMBER


Probability of BELOW for SEPTEMBER


| User | Reason | Uncertainty need | Method | Forecaster |
| :---: | :---: | :---: | :---: | :---: |
| Mohair farmers | Need 24 hrs to shed goats in to rain+cold+wind | Risk of adverse weather | Worded, SMS | Determine prob from EPS |
| Maize farmers | Rain forecasts for planting, | Seasonal outlook, specific | All |  |
| Maize farmers | Wind and dust damage to crops | Risk of strong wind ( $>15 \mathrm{kts}$ ) | Worded | Forecast still deterministic |
| Grain traders | Market | Likelihood of rain, amount, distribution | Web, phone for confirmation |  |
| Chokka boats (squid) | Inshore sea conditions | Sea state. "How sure are you" | Cell phone from boats | Deterministic, forecaster impression |
| Road engineering | No rain when tarring roads | Even a small chance of rain will stop operations | Worded probabilities | False alarm is high, but POD also |
| Brickworks | Takes 6 hours to cover all brick drying outside | \% of rain: $30 \%$ is their threshold | Web, maps |  |
| Disaster management | Preparedness, early warning | Risk of hazardous weather, rather over warn, as early as possible | Worded, maps: SMS, email |  |
| General Public |  |  |  |  |

## Subjective Probability Estimation

Table 1: Forecaster Probability Calculator:
Representative PoP and related terminology


## Table 2: Forecaster Definitions (Input)

| AREAL COVERAGE (Showers and Thundershowers) |  |
| :---: | :---: |
| Few | Little aerial coverage over 24 hours because: <br> - No clear dynamical system. <br> - Trigger typically heat or weak lower convergence in the absence of a clear dynamical system. <br> - Tephi moderately unstable for T/S |
| Numerous | Good aerial coverage over 24 hours because: <br> Clear dynamical system, such as an upper trough with associated divergence/uplift patterns, or a clear tropical convergence/ divergence pattern. |
| Extensive | Almost entire area covered over 24 hours because: <br> - Strong dynamical system, like a proper cut-off low, strong tropical low, etc. <br> - Rarely for thunderstorms |
| TEMPORAL DISTRIBUTION (Rain) |  |
| Occasional | Rain now and then with longer dry spells in between. Weak front or high ridging, etc. |
| Intermittent | Rain on and off with short dry spells in between. Well developed front, strong ridging, etc. |
| General | Rain continuous all over area and all the time. Well defined cut-off low or tropical low |
| FORECASTER CONFIDENCE (Based on guidance by models, data \& forecaster experience) |  |
| Doubtful | There are some indication by a model or some data, although evidence are not convincing, most models disagree |
| Possibly | Some models or data agree, others not convincing. There is still some doubt. |
| Definitely | All guidance very strong and supportive, data clearly support, all models agree on identified phenomenon, forecaster absolutely convinced from experience, or already happening |

## Table 3: Public products definitions (Output)

| THUNDERSTORMS\& SHOWERS (i.e. precipitation usually from convective clouds) |  |  |
| :--- | :--- | :--- | :--- |
| Term | PoP | Definition |
| Isolated | $30 \%$ | A couple of storms over the area, low chance of being affected where person is |
| Scattered | $60 \%$ | Numerous storm over the area, good chance of being affected where person is |
| Widespread | $80 \%$ | Storms over most of the area, very good chance of being affected where person is |

## A Rainfall

## Verification Product:

 Forecast Reliability for day 2-This measures the \% of time rainfall occurred at stations when $60 \%$ rain was predicted

- For good reliability the \% should be between 50 and $70 \%$, or yellow and orange




## Some General Comments

- Approach too top down (scientist/forecaster driven) and not enough user involvement
- Many do not know they ask for uncertainty information
- Others do not know that they can benefit from uncertainty info
- Users are at different levels - capacity building
- Need to cater for each user's specific needs: differ between them, one product does not suit all
- Must be able to reflect against a baseline = need for verification of probabilistic forecasts
- Need to cater for different needs per timescale

