Towards Evidence-Based Climate Change Adaptation Policies for Heatwave

Yeora Chae

01. Background

□ Heatwave Damage (2017)

- Heatwave Damage [~07 of September, CDC(2017)]
 - Morbidity: 1,537
 - Mortality: 11
- Characteristics of Heat-Related mortality
 - Time Zone: 10:00-12:00 > 15:00-16:00 > 19:00-24:00 > 17:00-18:00
 - Age Group: 50s(24%) > 40s(17%) > 60s(15%) > 70s(11%)
 - Place: Workshop(31%) > Field(17%) > Roads(10%) > Playground(6%)

01. Background

$\hfill\square$ Need for customized adaptation policies

- National, metropolitan, local governments have established adaptation plan based on vulnerability assessment in order to reduce climate change damage
 - Little evidence on how current adaptation plan reduces actual vulnerability (IPCC, 2014)
 - Difficulties in understanding the processes and drivers of vulnerability (Ford et al., 2016)
 - Current vulnerability assessment system includes only some factors of the adaptive capacity indexes, such as the number or existence of the resources (the number of civil servants, facilities, and etc.)
 - Limits to establish adaptation plan with the regional characteristics and the needs of residents(Kim, Do-woo, 2014)

01. Background

□ Customized adaptation plan using big data

 \bigcirc Climate change

- A cross-cutting issue over economy, society, environment, politics, and etc.
- Need for integrated approaches
- Big data: regarded as an opportunity in climate change adaptation
 - Applying detailed temporal and spatial changes of society, economy, and environment
 - Identifying the processes and drivers of vulnerability formation
 - High-resolution spatial data, such as image from satellite and drone
 - → Analyzing spatially vulnerable and hazardous areas by changing climate of sub-regions (Ford et al., 2016)
 - Attracting the interests of the people, identifying issues, and drawing the public reaction, participation, cooperation, and consensus (Kim, Mi-jeong et al., 2013)

01. Need for Big data-based heat-related morbidity analysis

	Factor	Key findings	Author(year)		
	Sex	Men are less likely to suffer from heatwave than women	Park, et al.(2008)		
Social Factors	Age	Number of deaths of the age of 65 or more is approximately 1.5 times as high as that of the age under 65	Park, et al.(2008)		
	Disease	Park, et al.(2008)			
	Income	The lower the income level, the more vulnerable to heatwave	Kim and Joh(2006)		
Environmental Factors	Temperature	Daily maximum temperature, Daily minimum temperature, Heat Index, Increase of the days of heatwave duration	Park, et al.(2008) Lee, Sara(2010) Lee, et al.(2010) Kim, et al(2014) Shin, Donghee(2015)		
	Temperature Index	Heat Index, perceived temperature index, wind chill temperature index	Lee, et al.(2014) Lim, Soojeong and Lee, Seungho(2016)		
	Air mass very hot and very dry air mass, hot and humid air mass		Lee, et al.(2010)		
	Urbanization	The incidence of heat-related morbidity in rural areas is higher than that in cities	Kim, et al.(2014)		
	Land cover	Agricultural area and urbanization area	Park, et al.(2016)		

Source: re-organized by author based on references

02. Data and Methodology

NHIS

HIRA

□ Health and Medical big data

High values appear in some regions

{Ranking by City / Town>

Ranking of Si, Gun, Gu

02. Data and Methodology

□ Temperature Data

Year

(Characteristics of Temperature)

Used average area of 59 stations

□ Characteristics of nationwide outbreak

- Heat-related morbidity has steadily increased
- Most of the total outbreaks are outpatients
- Up to 4 times more outpatients compared to 2002
- Up to 16 times more hospitalized patients compared to 2002

□ Characteristics of nationwide outbreak

• Foreigners account for less than 1.5% of the total

• The incidence of foreigners is four times that of Koreas aged 20-64

- * Foreigners: Korea Employment Information Service
- * Total patients and population: Age of 20 to 64

[•] Source:

□ Characteristics of nationwide outbreak

(Relation between nationwide annual avg of heat-related morbidity/mortality and temperatural environment)

10

\Box Characteristics by region

• Estimated areas with lack of medical service

Estimated areas as Medical service supplied

٠

(Analysis of the movement from residence to treatment region (2002~2015))

*Movement from regions with lack of medical services to surrounding regions

Low rank

High rank (Recent) High rank (Past)

03. Characteristics of heat-related morbidity

□ Characteristics by region

(Comparison of socioeconomic change by timing of inclusion into High-ranked regions)

□ Threshold temperature of heat-related morbidity

(Nationwide avg threshold temp. of the outpatient and inpatient)

Threshold temp.: Nationwide avg of daily max temperature, approx. 30°C

□ Threshold temperature of heat-related morbidity

(Threshold temp for outpatients by age(Primary diagnosis))

□ Threshold temperature of heat-related morbidity

Outpatient(Primary)

	seg3	seg2	seg1
I	22	50	29
S	47	69	12

Type of high-ranked region

	seg3	seg2	seg1		
I	3	8	10		
S	3	3	1		

- Seg3-I: Changnyeong, Seocheon, Hadong
- Seg3-S: Sangjoo, Gwangyang, Jangseong
- Seg2-I: Goseong, Boryeong, Mooan, Hapcheon, Damyang Sasang-Gu, Gijang-Gun, Sancheong
- Seg2-S: Namhae, Youngcheon, Gimhae
- Seg1-I: Imsil, Goheung, Shinan, Boseong, Dangjin, Jeongsun, Gimje, Geumsan, Moojoo, Youngyang,
- Seg1-S: Cheongjoo

Outpatient(Primary)

	seg3	seg2	seg1
Ι	3	5	3
S	37	131	50

Type of high-ranked region

	seg3	seg2	seg1		
Ι	2	1	3		
S	7	12	3		

- ■Seg3-I: Shinan, Haenam
- Seg3-S: Jeongeup, Wando, Gochang, Imsil, Hampyeong Goryeong, Mokpo
- Seg2-I: Jangheung
- ■Seg2-S: Mooan, Gurye, Gokseong, Soonchang, Najoo, Boseong, Sacheon, Jindo, Buan, and etc.등
- Seg1-I: Jangsoo, Gangjin, Changnyeong
- Seg1-S: Euiseong, Gijang, Gapyeong

17

03. Characteristics of heat-related morbidity

□ Threshold temperature of heat-related morbidity

<Pattern and threshold temperature of outpatient(Primary)>

18

03. Characteristics of heat-related morbidity

□ Threshold temperature of heat-related morbidity

<Pattern and threshold temperature of inpatient(Primary)>

(Heat-related morbidity by occupational classification)

□ Contributing factor of high-ranked regions by region

3.0 2.5 **CASE / 10,000 people)** 1.5 1.0 Self-employed Gov't employee & Educational General employee Medical Aids 0.5 0.0 **Outpatients** (Primary) **Outpatients** (Secondary) Type of diagnosis 0.18 0.16 0.14 0.12 CASE / 10,000 people) 0.10 Self-employed Gov't employee & Educational 0.08 General employee Medical Aids 0.06 0.04 0.02 0.00 Inpatients (Primary) Inpatients (Secondary) Type of diagnosis

✓ Total population of level 0 is based on the data of medical benefits(basic living recipients, men of national merit, and etc.)

Contributing factor of high-ranked regions by region

- 2) Mining
- 3) Manufacturing

5) Construction

- 8) Finance. Insurance
 - 9) Real estate, Leasing, Business Service
- 10) Public defense, Social security
- 4) Electricity, Housework, Water 11) Education Service
 - 12) Health, Social Welfare
- 6) Retail and wholesale, Repairing 13) Other public societies, Private service
- 7) Accommodation, Restaurants 14) Transportation, warehouse, communication

Uncategorized > Manufacturing > Real estate, Leasing, Business Service > Retail and Wholesales [Inpatient (Primary/Secondary)]

Uncategorized \rangle Manufacturing \rangle Real estate, Leasing, Business Service > Construction

uncategorized: In case of no information of the occupation₂₀ such as the self-employed.

Contributing factor of high-ranked regions by region

(Heat-related morbidity by occupation – per 10,000 employees)

1) Agriculture, Forest, Fishery

2) Mining

3) Manufacturing

4) Electricity, Housework, Water 11) Education Service

5) Construction

9) Real estate, Leasing, Business Service

8) Finance. Insurance

- 10) Public defense, Social security
- 12) Health, Social Welfare

6) Retail and wholesale, Repairing 13) Other public societies, Private service

7) Accommodation, Restaurants 14) Transportation, warehouse, communication

[All types of diagnosis, but inpatient(Secondary)] Electricity, Housework, Water > Agriculture, Forest, Fishery > Mining > Manufacturing > Public Defense

[Inpatient(Secondary)]

Mining \rangle Electricity, Housework, Water \rangle Agriculture, Forest, Fishery > Manufacturing > Construction

□ Contributing factor of high-ranked regions by region

(Scatter plot of socioeconomic factors of Si, Gun, Gu and the number of outpatient(Primary) (2002~2015))

□ Contributing factor of high-ranked regions by region 〈Outpatient(Primary) 〉

Rank	Si, Gun, Gu	Morbidity per 10,000	Ratio of Self-employed	Ratio of the age of over 65 yr	Ratio of Level 0 of premium	Ratio of agricultural population	Ratio of fishery population	Avg. of daily max temp. (Aug)	No. of cooling center per 10,000 elders	Pattern	Thresh old Temp.
1	Imsil Gun	30.91		0	0	0				seg1-l	
2	Goheung Gun	17.89	0	0	0	0	0		0	seg1-l	
3	Shinan Gun	16.50	0	0		0	0			seg1-l	
4	Boseong Gun	12.00		0		0	0		\bigcirc	seg1-l	
5	Namhae Gun	10.62	0	0			0			seg2-S	28.7
6	Changnyeong Gun	8.85						0		seg3-l	28.3
7	Goseong Gun	7.77	0				0			seg2-l	28.2
8	Seocheon Gun	6.75					0			seg3-l	27.5
9	BoRyeong Si	6.12					0		0	seg2-l	29.3
10	Mooan Gun	5.96					0			seg2-l	30.3
11	Hapcheon Gun	5.82		0	0	0		0		seg2-l	31.4
12	Dangjin Si	5.79					0			seg1-l	
13	Jeongseon Gun	5.47								seg1-l	
14	Gimje Ji	5.24			0			0		seg1-l	
15	Hadong Gun	4.69	0				0			seg3-l	30.0
16	Damyang Gun	4.65								seg2-l	32.4
17	Cheongjoo Si	4.64								seg1-S	
18	Sangjoo Si	4.47							0	seg3-S	30.4
19	Geumsan Gun	4.18	0							seg1-l	
20	Busan – Sasang Gu	4.17								seg2-l	30.1
21	Gwangyang Si	4.08								seg3-S	22.3
22	Yeongcheon Si	4.08								seg2-S	33.0
23	Gimhae Si	3.93								seg2-S	31.6
24	Busan – Gijang Gun	3.81	0							seg2-l	32.2
25	Moojoo Gun	3.81				0		0		seg1-l	
26	SanCheong Gun	3.72		0	0	0				seg2-l	35.0
27	Youngyang Gun	3.50		0	0	0				seg1-l	
28	Jangseong Gun	3.47			0					seg3-S	26.8

□ Contributing factor of high-ranked regions by region 〈Inpatient(Primary) 〉

		Morbidity	Batio of	Ratio of	Ratio of	Ratio of	Ratio of	Avg. of	No. of cooling		Thresh
Rank	Si, Gun, Gu	per	Self-employed	the age of	Level 0 of	agricultural	fishery	daily max temp.	center per	Pattern	old
		10,000		over 65 yr	premium	population	population	(Aug)	10,000 elders		Temp.
1	Shinan Gun	2.11	0	0		0	0			seg3-l	23.0
2	Haenam Gun	1.29	0				0			seg3-l	23.0
3	Jangsoo Gun	0.57			0	0				seg1-l	
4	Jeongeup Si	0.56			0					seg3-S	25.0
5	Mooan Gun	0.53					0			seg2-S	28.1
6	Euiseong Gun	0.52		0	0	0		0		seg1-S	
7	Gurye Gun	0.50		0	0			0		seg2-S	27.0
8	Gijang Gun	0.45	0							seg1-S	
9	Wando Gun	0.44	0				0	0		seg3-S	29.7
10	Gapyeong Gun	0.37	0						0	seg1-S	
11	Gokseong Gun	0.37		0	0	0				seg2-S	27.0
12	Soonchang Gun	0.37		0		0				seg2-S	27.5
13	Gochang Gun	0.36	0			0				seg3-S	26.9
14	Najoo Si	0.36								seg2-S	31.6
15	Gangjin Si	0.36		0	0		0	0		seg1-l	
16	Janggeung Gun	0.35		0			0			seg2-l	27.5
17	Boseong Gun	0.35		0		0	0		0	seg2-S	25.5
18	Imsil Gun	0.34		0	0	0				seg3-S	27.6
19	Sacheon Si	0.32					0			seg2-S	28.9
20	Hampyeong Gun	0.32		0	0	0				seg3-S	27.7
21	Goryeong Gun	0.31						0		seg3-S	28.0
22	Jindo Gun	0.30	0	0	0	0	0	0		seg2-S	25.0
23	Booan Gun	0.30	0				0	0		seg2-S	30.0
24	Youngam Gun	0.29								seg2-S	28.0
25	Yecheon Gun	0.29		0	0	0		0		seg2-S	27.5
26	Changnyeong Gun	0.28						0		seg1-l	
27	Haman Gun	0.26						0		seg2-S	30.0
28	Mokpo Si	0.26						0		seg3-S	26.0

04. Implication

- Nationwide heat-related morbidity has kept increasing,
- Incidence of foreigners was 4 times as high as that of Koreans
- Nationwide average threshold temperature was 30°C, but was different by region.
- The older the age, the lower threshold temperature
- High-ranked Si, Gun, and Gu was Imsil, Goheung, Shinan, Boseong, Changnyeong, Muan and etc.
- Contributing factors to heat-related morbidity were different by region
 - Imsil Gun: Elderly population, low-income, Agriculture
 - Goheung Gun: Elderly population, low-income, Agriculture, Fishery, Lack of cooling center
 - Shinan Gun: Elderly population, Agriculture, Fishery
 - Changnyeong Gun: Max temperature of August.
 - Boseong Gun: Elderly population, Agriculture, Fishery
- Need to establish differentiated preventative measures for heat-related morbidity by region/type of diagnosis/age/business type

Thank you

