

국립기상과학원

National Institute of Meteorological Sciences

Development of heat-wave impact forecasting system based on Limited Area Ensemble Prediction System (LENS)

<u>Miloslav Belorid</u>, Kyu Rang Kim, Changbum Cho, Misun Kang, Britta Jaenicke, Baek-Jo Kim

Applied Meteorology Research Division

Introduction

- Currently, heat-wave warnings in Korea are issued by forecasters upon results from RDAPS, MOS etc.
- **Advisory:** daily *T_{max}* >33°C period > 2days
- Warnings: daily *T_{max}* >35°C period > 2days
- The thresholds are based on climatological characteristics (95th and 99th percentile of maximum summer temperature (June-September)
- However, an effective warning system should consider also the impact of heat-wave on human health (Lloyd-Sherlock, 2000; Masato et al., 2015)

Introduction

- Numerical models have uncertainties due to unknown initial conditions, unresolved sub-grid scale processes etc.
- Ensemble Prediction Systems (EPS) can deal with these uncertainties by providing several scenarios
- Results from EPS can be then used as base for the probabilistic forecast and warning systems
- Example: MOGREPS-W (Neal et al., 2014; Masato et al., 2015)
- Main goal: Development of heat-wave impact warning system for South Korea based on Limited Area Ensemble Prediction System (LENS)

국립기상과학원 National Institute of Meteorological Sciences

Description of LENS

국립기상과학원 National Institute of Meteorological Sciences

Total: 25 members

• Unified Model (UM) VN10.1

Global Ensemble(EPSG)

- Horiz. : N400 (~32km)
- Vert. : 70 layers (top ~80km)
- +12days Forecast
- ICs : ETKF

LENS

1+24+24 members

Horiz : 3km (460x482)

+ 72 hrs Forecast

1+12 members

Vert. : 70 layers (top ~ 39km)

Init Pert : Downscaling of EPSG

Source: Lee Seungwoo

LENS post-processing

Source code:

∂ python[™]

Iris Met Office

matpletlib

Step 5: Decision on based on impact matrix and visualization of heat-wave impact risk maps

국립기상과학원 National Institute of Meteorological Sciences

Computation of probabilities

- 국립기상과학원 National Institute of Meteorological Sciences
- Grid-point probability (GPP): fraction of members exceeding threshold
- Area probability (AP):
 - 1. Maximum grid-point probability within the area (MXAP)
 - 2. Counting members that exceed threshold within the area (MCAP)

LENS evaluation (Time-lag ensemble)

국립기상과학원

National Institute of

Figure 1. Comparison of RMSE for various thresholds (hourly data) when using 1+12 members (left) and time-lag ensemble 1+12+12 members (right)

Figure 2. Example of time-series from the most recent forecasts of each member and observation at Seoul 2017/07/24~2017/08/05

LENS evaluation for daily T_{max}

LENS (25 members) daily Tmax: lead day I.

LENS daily Tmax: Correlation coefficient 1.0 0.8 0.6 0.4 >=29.3 >=31.0 0.2 >=33.0 0.0L 1 2 З LENS daily Tmax: Root mean square error 7 6 5 RMSE[°C] 4 3 >=29.3 >=31.0 2 >=33.0 1^{1}_{1} 2 3 Forecast lead day

Correlation coefficient

Figure 4. Correlation coefficient (r) of daily T_{max} and Root-mean square error for different thresholds

10 8

6

Probabilistic evaluation

Grid-point probability vs Area probability

Figure 5. Brier score of daily T_{max} (left) and reliability diagram (right) for gridpoint and area probability strategies

Probabilistic evaluation

Grid-point probability vs Area probability

Figure 5. Brier score of daily T_{max} (left) and reliability diagram (right) for gridpoint and area probability strategies

Probabilistic evaluation

Grid-point probability vs Area probability

Figure 5. Brier score of daily T_{max} (left) and reliability diagram (right) for gridpoint and area probability strategies

Heat-wave impact risk maps Example case study: 2016/07/29 ~ 2016/07/31

Figure 6. Example of heat –wave impact risk maps an distribution of daily T_{max} from AWS stations (interpolated)

Visualization on the WEB

Copyright (2) 2016 NATIONAL INSTITUTE of METEOROLOGICAL SCIENCES. All Rights Reserved.

Conclusions and Summary

- 1. Ensemble forecasting systems may underestimate the daily T_{max} which might be critical for heat-wave forecast
- 2. Considering the cold bias of LENS in predicting the daily T_{max} , we utilized the system output to develop a heat-wave impact warning system
- 3. The lack of ensemble members was solved by using time-lag ensemble strategy , which decreased the RMSE of air temperature
- 4. Area probabilities are useful strategy to simplify the results, but in our case it also helps to reduce the cold bias of probabilistic forecast.
- 5. The bias of LENS was also considered in decision making about the impact matrix thresholds .

Future plans

y3

y2

y1

Future plans

Figure 10. Results of segmented regression of daily T_{max} and thermal morbidity for different regions in South Korea

y3

y2

Y1

Future plans

γ3

ζ2

References

- Iris. V1.2. 28-Feb-2013 Met Office. UK. https//github.com/Scitools/iris.git
- Lloyd-Sherlock P. 2000, Population ageing in developed and developing regions: implications for health policy *SocSciMed*, 51:887-95
- Masato G. et al. 2015, Improving the health forecasting alert system for cold weather and heat-waves in England: A proof-of-Concept using Temperature-Mortality Relationships *PLosONE* 10(10)
- Neal A. R. et al., 2014, Ensemble based first guess support towards a risk-based sever weather warning service, *Meteorol. Appl.* 21:563-577

Contact

• E-mail: mbelorid@korea.kr

THANK YOU