

E-SURFMAR

Task Team on Shipborne AWS

Content

- Background and Meetings
- Definitions and Considerations
- Parameters internal, to be measured, other
- Data Handling and Transmission
- Modes of Operation
- Discussion

Background

- Task Team was established on request of PB-OBS (Nov 2007) as subgroup of E-SURFMARs VOS-TAG
- Main purpose was to define and agree specifications for AWS for use on observing ships recruited by E-SURFMAR participants
- Task Team has considered various advantages and disadvantages of different AWS arrangements
- Based on the considerations the Task Team has made recommendations where appropriate

Meetings of the Task Team

- TT-AWS-1, Initial Meeting (at VOS-TAG-5, DeBilt, 11 April 2008)
- AWS Installation workshop
 - onboard Container Vessel Montreal Express, Hamburg, 30 November 2008
 - onboard Survey Vessel Wega, Hamburg, 1 December 2008
- TT-AWS-2 (Hamburg, 1-2 December 2008)
- TT-AWS-3 (at VOS-TAG-6, Geneva, 14 May 2009)

Definitions

Autonomous AWS

- typically measures a reduced set of parameters
- generally considered as 'plug and play' system
 (independent of the host ships systems except power supply)

Integrated AWS

- typically measures a variety of parameters
- typically requires integration with the ships systems (power supply, navigational data, ...)
- Recommendation: autonomous AWS

Considerations

- Ease of installation
 - AWS require technical support for
 - installation
 - maintenance
- Cost effectiveness of the observations
 - number of observations received
 - quality of observations
 - costs are caused by
 - equipment
 - installation
 - data transmission
 - maintenance

Parameters - system

Station identifier

- identification of the reporting station
- Recommendation: a repeating unique masked callsign shall be used

Position

- location of the station at the time the weather report was computed
- Recommendation: position shall be derived from navigational data

Timestamp

- point of time at which the report was computed
- Recommendation: clock of the AWS shall be set to UTC timezone and synchronised to an accurate external clock, such as GPS

Parameters - to be measured

- Minimum set of parameters (based on importance and ease of installation)
 - pressure
 - air temperature
 - humidity
- Further parameters
 - Wind (possibly Heading needed for true wind calculation)
 - SST
 - ...
- Visual Observations
 - require input terminal
 - require sophisticated help system
 - Recommendation: visual observations should be an optional feature for integrated systems, but are not required for autonomous systems

Parameters - navigational data (NMEA 0183)

- \$--RMC,hhmmss.ss,A,yyyy.yy,a,xxxxxx.xx,a,s.s,c.c,ddmmyy,x.x,a,a*hh<CR><LF>
 - recommended to be used to derive
 - time and date (UTC)
 - position (latitude and longitude)
 - speed over ground
 - course over ground
- \$--HDT,x.x,T*hh<CR><LF>
 - recommended to be used to derive
 - heading of station (if needed for calculation of true wind)

Parameters - other

Other parameters to be considered

- environment
 - protection (IPxx)
 - temperature
 - humidity
 - shock
 - electrostatic sensitivity (ESD)
 - ...
- power supply
 - voltage
 - power consumption
 - stand-alone or from station
 - ...
- size and weight
- ...

Data Handling

Data Display

- typically requires cabling to ships bridge
- typically highly appreciated by ships crew
- Recommendation: a data display should be considered as part of the system

Data Storage

- adds extra complexity to AWSas backup if data transmission fails
- as backup if data transmission fails
- Recommendation: data storage is not required for autonomous systems

Data Output

- weather report (typically hourly)
- permanent output (for onboard systems, such as data display, proprietary NMEA recommended)

Data Transmission

Data to be transmitted

- identifier
- timestamp
- position
- acquired and calculated parameters
- extra data (meta data, housekeeping data, ...)

Data Format

- standard format
 - can be routed directly into GTS, but does not allow extra data
- raw data format
 - allows transmission of extra data, but needs to be preprocessed before routed into GTS
- Recommendation: a raw data format with extra data should be used

Data Transmission

Transmitter

- various techniques available
- Recommendation: bi-directional communication should be considered

"Port mode"

- facility to enable / disable the transmission of weather reports
- can be combined with a facility to define areas of interest in which more or less reports than usual are generated and transmitted
- Recommendation: a facility to allow more or less reports to be computed and transmitted should be included in the system

Modes of Operation

- Normal Operation Mode
 - AWS computes and transmitts reports an a regular basis
- Service / Diagnostic Mode
 - Mode for maintenance, not accessible by normal crewmember
 - Recommendation: the system should have a service mode that allows
 - parameters of the system (callsign, height, ...) to be edited
 - components of the system to be setup, enabled, disabled, ...
 - data handling to be managed (port mode, transmission, ...)
 - access to raw sensor data (debugging)
 - access to system parameters (housekeeping)

• • • •

Discussion

