

# **Marine Networks**

#### Sarah North – Observing Systems and Data Appreciation September 2010



# Marine Networks - Scope of Observing Networks



#### Voluntary Observing Ships (VOS) and VOS Climate Ships



**Offshore Platforms and Rigs** 



**Argo Floats** 



**ASAP** ships



**Drifting Buoys** 



Moored Buoys



Shipborne AWS



This presentation covers the following areas....

- 1. PMO Network and Marine Staff
- 2. Overview of Marine Networks
  - Voluntary Observing Ships (VOS)
  - VOS Climate Ships (VOSClim)
  - Offshore Platforms and Rigs
  - Shipborne AWS
  - Upper Air (ASAP) ships
- 3. Current Issues & Future plans









# **1. PMO Network and Marine Staff**





# PMO Activity 2000 - 2010

100-Inspections Withdrawals Recruitments 



# PMO Activity 2000 - 2010





# 2. Overview of our Marine Networks



# UK VOS Fleet - New VOS Classes

| Aet Office          |          |
|---------------------|----------|
|                     | Dec 2010 |
| Selected            | 209 <    |
| Selected (AWS)      | 0        |
| VOSCIim             | 104 >    |
| VOSCIim (AWS)       | 3        |
| Auxiliary           | 0        |
| Auxiliary (AWS)     | 0        |
| Supplementary       | 0        |
| Supplementary (AWS) | 9 >      |
|                     | [=325]   |

We also maintain 20 < manually reporting offshore installations and have access to data from 38 > automated offshore installations



#### UK VOS - Manually Reporting Fleet Trend 1992 - 2010





# UK VOS Fleet - Observations





## Growth of Automation in UK Fleet





#### Instruments for manually reporting ships









#### **Measured parameters**

- **Atmospheric pressure** 0
- Air temperature 0
- Humidity 0
- Sea Surface Temperature



#### Visual parameters

- Present & Past Weather
- Cloud Type, Height & Amount
- Sea & Swell.
- Wind Speed & Direction
- Visibility



- 'TurboWin' software is issued to all UK VOS
- 'TurboWeb' is being trialled successfully on one ship
- Ships own computers used (laptops being gradually withdrawn)
- TurboWin automatically prepares a coded FM-13 message for real time transmission via Inmarsat C or e-mail.
- stores the delayed mode observation in IMMT code
- includes extensive Quality Control checks
- includes photos to assist in selecting the correct cloud types or estimating sea state.
- Includes training information







- We aim to move to a core UK fleet of 200 actively reporting VOS Climate standard ships within a 3 year time frame - to replace the existing 'Selected' class ships
- This manually reporting VOSClim fleet will compliment, and add value to the shipborne Automatic Weather Stations (AWS).
- In 3 years time we aim to have deployed ~ 50 autonomous shipborne AWS systems providing hourly observations











- We also have access at minimal cost to third party data from a further ~38 offshore installations (more than 280,000 observations a year)
- The number of offshore AWS systems is set to increase in the next couple of years



# Met Office Shipboard Automatic Weather Stations





### AWS Developments

- We have deployed and evaluated a variety of different shipborne AWS systems e.g. BATOS, MILOS, MINOS, AUTOMET, METPOD, AVOS
- We looked at the Data Availability, Timeliness and Quality of the various AWS systems, together with issues related to their ease of installation
- Our evaluation highlighted the need to develop a simple 'plug and play' AWS for the basic parameters (Pressure, Air Temp, Humidity ) but with sufficient modularity to add other parameters when required (SST and Wind).
- We are about to roll out a new Met Office AWS



# Met Office Shipborne AWS







Systems have been deployed on a ferry ('Pride of Bilbao') and a Research ship ('Ernest Shackleton')









 UK ASAP Ship 'Mississauga Express' will be fully integarated into the E-ASAP programme ( mangerially and financially ) from 2011



### 4. Current Issues & Future plans for the VOS



# The Future of the UK VOS Fleet

The future of the UK VOS in the next few years will be dependent upon several key factors, including....

- Increasing levels of Automation (rolling out autonomous AWS)
- Increased European / International collaboration
- Maintenance of a core fleet for climate purposes (~200 VOSClim ships)
- Maintenance of funding streams during the economic downturn
- Reduction of transmission costs (Iridium, data compression etc)
- Replacing traditional PAB's with more stable/accurate/reliable barometers ( e.g. Viasala 330)
- Overcoming data security issues (needs a harmonised approach)
- Phasing out use of mercury thermometry and replacing with digital systems or AWS
- Enhancement of ship design standards (e.g. SOLAS Regs)
- Increased 'buy-in' and support from shipowners









### Questions

