

#### World Meteorological Organization

Working together in weather, climate and water

Fourth International PMO Workshop & support to global ocean observations using ship logistics *Orlando, Florida, USA, 8-10 December 2010* 

WMO operational Codes

Etienne Charpentier Observing Systems Division WMO Secretariat

WMO; OBS Department



# Operational codes for the distribution of time critical data through the Global Telecommunication System (GTS)

- Traditional Alphanumeric Codes (TAC) examples
  - FM 13–XIV SHIP Report of surface observation from a sea station
  - FM 18–XII BUOY Report of a buoy observation
  - FM 36–XI Ext. TEMP SHIP Upper-level pressure, temperature, humidity and wind report from a sea station
  - FM 62–VIII Ext. TRACKOB Report of marine surface observation along a ship's track
  - FM 63–XI Ext. BATHY Report of bathythermal observation
  - FM 64–XI Ext. TESAC Temperature, salinity and current report from a sea station
  - FM 65-XI Ext. WAVEOB Report of spectral wave information from a sea station or from a remote platform (aircraft or satellite)
- Table driven Codes (TDC)
  - FM 94–XIV BUFR Binary universal form for the representation of meteorological data
  - FM 95–XIV CREX Character form for the representation and exchange of data



#### FM 13-XIV SHIP

(report of surface observation from a sea station)

- Allow for the reporting of data from VOS, rigs and platforms, sea stations, moorings
- Often referred as "BBXX"
- Identification
  - D...D Ship's call sign (7-digit max, "SHIP" can be coded if no call sign is available)
  - A<sub>1</sub>b<sub>w</sub>n<sub>b</sub>n<sub>b</sub>n<sub>b</sub> Identifier for buoy, rig, sea platform
- Position in 1/10 of degree (LaLaLa QcLoLoLoLo)
- Metadata coding limited

FM 12-XIV SYNOP Report of surface observation from a fixed land station FM 13-XIV SHIP Report of surface observation from a sea station FM 14-XIV SYNOP MOBIL Report of surface observation from a mobile land station CODE FORM: SECTION 1 i<sub>R</sub>i<sub>x</sub>hVV Nddff (00fff) 1s<sub>n</sub>TTT 4PPPP) 6RRRt<sub>R</sub> 9GGgg 5appp or 4a<sub>3</sub>hhh SECTION 2 222D<sub>s</sub>v<sub>s</sub>  $(0s_sT_wT_wT_w)$   $(1P_{wa}P_{wa}H_{wa}H_{wa})$   $(2P_wP_wH_wH_w)$   $((3d_{w1}d_{w1}d_{w2}d_{w2})$  $(4P_{w1}P_{w1}H_{w1}H_{w1}) \qquad (5P_{w2}P_{w2}H_{w2}H_{w2})) \qquad (\begin{cases} 6I_{s}E_{s}E_{s}R_{s} \\ \text{or ICING + plain length} \end{cases}$ plain language  $c_iS_ib_iD_iz_i$  $(70H_{wa}H_{wa}H_{wa})$   $(8s_wT_bT_bT_b)$  (ICE + or plain language SECTION 3 333 (0...)  $(1s_nT_xT_xT_x)$   $(2s_nT_nT_nT_n)$ (3Ejjj) (4E´sss) (5j<sub>1</sub>j<sub>2</sub>j<sub>3</sub>j<sub>4</sub> (j<sub>5</sub>j<sub>6</sub>j<sub>7</sub>j<sub>8</sub>j<sub>9</sub>))  $(7R_{24}R_{24}R_{24}R_{24})$   $(8N_sCh_sh_s)$ (6RRRt<sub>R</sub>)  $(9S_pS_ps_ps_p)$ (80000 (0 . . . . ) (1 . . . . ) SECTION 4 444 N'C'H'H'C+ SECTION 5 555 Groups to be developed nationally



#### Table Driven Codes

- Concerned codes
  - FM 94-XIV BUFR: Binary code (recommended for VOS data)
  - FM 95-XIV CREX: Character code
- More flexible
- Efficient in terms of volumes
  - Encoding according to required resolution
  - Compression for BUFR
- More data & metadata can be included
- Will permit the masking of ship's call sign using encryption
- Some preservability issues



## Migration to Table Driven Codes

- Traditional Character Codes frozen by CBS
- •All reports from sea stations shall be made in BUFR (or CREX) no later than 2012
- A transition period is recommended with distribution in both FM 13 SHIP and FM 94 BUFR formats
- BUFR encoding should be automated through the use of e-logbooks (no human encoding required)
- Encoders/decoders available from WMO

http://www.wmo.int/pages/prog/www/WMOCodes/Software\_encoder\_decoder\_20101005.doc



## Code migration schedule

| Category →                                       | Cat.1:<br>common                                                                             | Cat.2:<br>satellite<br>observations | Cat.3:<br>aviation <sup>(1)</sup> | Cat. 4: maritime                                                      | Cat. 5 <sup>(2)</sup> :<br>miscellaneous                  | Cat. 6 <sup>(2)</sup> :<br>almost<br>obsolete              |
|--------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|
| Lists of →<br>Traditional<br>code forms          | SYNOP<br>SYNOP<br>MOBIL<br>PILOT<br>PILOT MOBIL<br>TEMP<br>TEMP MOBIL<br>TEMP DROP<br>CLIMAT | SAREP<br>SATEM<br>SARAD<br>SATOB    | TAR<br>SI<br>TAP<br>AM<br>ROPOI   | BUOY TRACKOB BATHY TESAC WAVEOB SHIP CLIMAT SHIP PILOT SHIP TEMP SHIP | RADOB IAC IAC FLEET GRID(to GRIB) MAFOR HYDRA HYFOR RADOF | CODAR ICEAN GRAF NACLI etc. SFAZI SFLOC SFAZU RADREP ROCOB |
| Schedule ↓                                       | CLIMAT<br>TEMP                                                                               |                                     |                                   | CLIMAT TEMP SHIP                                                      |                                                           | ROCOB SHIP<br>ARFOR<br>WINTEM                              |
| Start<br>experimental<br>Exchange <sup>(3)</sup> | Nov. 2002 for<br>some data<br>(AWS SYNOP,<br>TEMP USA)                                       | Current at some Centres             | 2006  2002 at some entres for DAR | 2005 2003 for Argos data (BUOY, sub-surface floats, XBT/XCTD)         | 2004                                                      | Not applicable                                             |
| Start<br>operational<br>exchange <sup>(3)</sup>  | Nov. 2005                                                                                    | Current at some Centres             | 2003<br>AMIC                      | 2007  2003 for Argos data (BUOY, sub-surface floats, XBT/XCTD)        | 2006                                                      | Not applicable                                             |
| Migration<br>complete                            | Nov. 2010                                                                                    | Nov. 2006                           | 2015<br>2005 for<br>AMDAR         | 2012  2008 for Argos data (BUOY, sub-surface floats, XBT/XCTD)        | 2008                                                      | Not applicable                                             |





### BUFR basics (1/7)

- Data are encoded in binary
  - Not for direct human encoding & decoding
  - Software needed to encode & decode
  - Minimum number of bits required to encode data
  - Compression is possible (e.g. time series)
- Table driven code
  - The format itself is quite stable
  - Tables are flexible and can be "easily" updated
    - » Changes submitted through the CBS Inter Programme Expert Team on Data Representation and Codes (IPET-DRC)



## BUFR Basics (2/7)

- Structure of BUFR report
  - Section 0 : "BUFR"
  - Section 1 : Identification
  - Section 2 : Optional section (local use)
  - Section 3: Description of data
    - » Describes data to be coded (i.e. the list of descriptors used in Section 4)
  - Section 4 : Observational data
    - » Observed data values coded according to the ordering in section 3, and coding requirements for each descriptor
  - Section 5: "7777"



## BUFR Basics (3/7)

- 4 Types of descriptors
  - Element descriptors (Table B)
    - » Elements to be encoded (e.g. identification, year, month, day, lat, long, P, T, present weather ...)
    - » Table indicates for each descriptor the coding requirements (units, nb bits, offset, scale)
  - Replication descriptors (e.g. repeat D/T/S data points for an ocean T profile)
  - Operator descriptors (e.g. re-scaling) (Table C)
  - Sequence descriptors: defines a sequence of descriptors
     (e.g. Date = Year + Month + Day) (Table D) permits
     to standardize coding practices, and shorten Section 3



### BUFR Basics (4/7)

- BUFR Tables http://www.wmo.int/pages/prog/www/WMOCodes/T DCFtables.html#TDCFtables
  - Table A Categories of data
  - Table B Classification/Definition of elements
  - Table C Definition of operation descriptors
  - Table D Definition of BUFR sequences
  - Code/Flag tables
    - » Code Tables: List of possible values for an element descriptor (e.g. present weather)
    - » Flag tables: Interpretation of each of the N-bits of an element descriptor
  - Common features to binary and alphanumeric codes
    - » Some Code/Flag tables common to TACs and TDCs



## BUFR Basic (5/7)

Example of element descriptors (Table B)

| TABLE<br>REFERENCE | ELEMENT NAME                                            | BUFR        |       |                    |                         |
|--------------------|---------------------------------------------------------|-------------|-------|--------------------|-------------------------|
| F X Y              |                                                         | UNIT        | SCALE | REFERENCE<br>VALUE | DATA<br>WIDTH<br>(Bits) |
| 0 02 038           | Method of water temperature and/or salinity measurement | Code table  | 0     | 0                  | 4                       |
| 0 07 063           | Depth below sea/water surface (cm)                      | m           | 2     | 0                  | 20                      |
| 0 22 001           | Direction of waves                                      | Degree true | 0     | 0                  | 9                       |
| 0 22 011           | Period of waves                                         | S           | 0     | 0                  | 6                       |
| 0 22 021           | Height of waves                                         | m           | 1     | 0                  | 10                      |
| 0 22 043           | Sea/water temperature                                   | K           | 2     | 0                  | 15                      |



### BUFR Basics (6/7)

#### Example of Flag Table

#### 0 02 038

#### Method of water temperature and/or salinity measurement

#### **Code figure**

| 0  | Ship intake               |
|----|---------------------------|
| 1  | Bucket                    |
| 2  | Hull contact sensor       |
| 3  | Reversing thermometer     |
| 4  | STD/CTD sensor            |
| 5  | Mechanical BT             |
| 6  | Expendable BT             |
| 7  | Digital BT                |
| 8  | Thermistor chain          |
| 9  | Infrared scanner          |
| 10 | Microwave scanner         |
| 11 | Infrared radiometer       |
| 12 | In-line thermosalinograph |
| 13 | Towed body                |
| 14 | Other                     |
| 15 | Missing value             |



### BUFR Basics (7/7)

#### Example of BUFR sequence (Table D)

| 3 02 057 |                |                                                           | Ship marine data                       |               |  |
|----------|----------------|-----------------------------------------------------------|----------------------------------------|---------------|--|
|          | 3 02 056       | Sea surface temperature, method of measurement, and depth |                                        |               |  |
|          |                | below sea                                                 |                                        |               |  |
|          |                | 0 02 038                                                  | Method of sea/water temperature        | Code table, 0 |  |
|          |                |                                                           | measurement                            |               |  |
|          |                | 0 07 063                                                  | Depth below sea/water surface (for sea | m, 2          |  |
|          |                |                                                           | surface temperature measurement)       |               |  |
|          |                | 0 22 043                                                  | Sea/water temperature                  | K, 2          |  |
|          |                |                                                           | $s_sT_wT_wT_w$                         |               |  |
|          |                | 0 07 063                                                  | Depth below sea/water surface (set to  | m, 2          |  |
|          |                |                                                           | missing to cancel the previous value)  |               |  |
|          | 3 02 021       | Waves                                                     |                                        |               |  |
|          |                | 0 22 001                                                  | Direction of waves                     | Degree true   |  |
|          |                | 0 22 011                                                  | Period of waves                        | s, 0          |  |
|          |                |                                                           | $P_{wa}P_{wa}$                         |               |  |
|          |                | 0 22 021                                                  | Height of waves                        | m, 1          |  |
|          | $H_{wa}H_{wa}$ |                                                           |                                        |               |  |
|          |                |                                                           |                                        |               |  |



## JCOMM DMPA Task Team on Table Driven Codes

- Chaired by Bill Burnett (US NDBC)
- Liaise with users of TDCs and consider their requirements
- Consider metadata requirements for TDCs (e.g. Pub47, ODAS, META-T)
- Review & evolve existing templates or new forms
- Maintain & evolve Master Table 10 (oceanographic data)
- Addresses climate requirements for preservability
- Coordinates implementation with CBS IPET-DRC
- Report progress to JCOMM



### **BUFR Templates**

- Series of BUFR descriptors for encoding specific types of platform data
- Correspond to specific coding practices
- May eventually correspond to a BUFR sequence



## **BUFR Templates**

- B/C10 Regulations for reporting SHIP data in TDCF
- BUFR Template for synoptic reports from sea stations suitable for ship observation data from VOS stations (in validation)
- JCOMM rationalization of BUFR sequences
  - Standard sequences by variable throughout the difference platform types
    - » e.g. same sequence for data + metadata for SST observations from VOS, moorings, drifters, tide gauges ...



## B/C10 - Regulations for reporting SHIP data in TDCF

http://www.wmo.int/pages/prog/www/WMOCodes/BC\_Regulatio

ns/BC10-SHIP.pdf

Amendment: 15 Sep. 2010

TM 308009 - BUFR template for synoptic reports from sea stations suitable for SHIP data

(Translation of FM 13 SHIP in BUFR)

| 3 08 009 |          | Sequence for representation of synoptic reports from a sea station suitable for SHIP data |
|----------|----------|-------------------------------------------------------------------------------------------|
|          | 3 01 093 | Ship identification, movement, date/time, horizontal and vertical coordinates             |
|          | 3 02 001 | Pressure data                                                                             |
|          | 3 02 054 | SHIP "instantaneous" data                                                                 |
|          | 0 08 002 | Vertical significance                                                                     |
|          | 3 02 055 | Icing and ice                                                                             |
|          | 3 02 057 | SHIP marine data                                                                          |
|          | 3 02 060 | SHIP "period" data                                                                        |

This BUFR template for synoptic reports from sea stations further expands as follows:

| 3 01 093 |          |          | Ship identification, movement, date/time, horizontal and vertical coordinates |                  | Unit, scale           |
|----------|----------|----------|-------------------------------------------------------------------------------|------------------|-----------------------|
|          | 3 01 036 | 0 01 011 | Ship or mobile land station identifier D                                      | .D               | CCITT IA5, 0          |
|          |          | 0 01 012 | Direction of motion of moving observing                                       |                  | Degree true, 0        |
|          |          |          | platform <sup>(3)</sup>                                                       | D <sub>s</sub>   |                       |
|          |          | 0 01 013 | Speed of motion of moving observing platform(4                                | <del>1</del> )   | m s <sup>-1</sup> , 0 |
|          |          |          | v                                                                             | /s               |                       |
|          |          | 0 02 001 | Type of station (i                                                            | i <sub>x</sub> ) | Code table, 0         |
|          |          | 0 04 001 | Year                                                                          |                  | Year, 0               |
|          |          | 0 04 002 | Month                                                                         |                  | Month, 0              |
|          |          | 0 04 003 | Day Y                                                                         | ΥY               | Day, 0                |
|          |          | 0 04 004 | Hour G                                                                        | G                | Hour, 0               |
|          |          | 0 04 005 | Minute g                                                                      | gg               | Minute, 0             |
|          |          | 0 05 002 | Latitude (coarse accuracy) L <sub>a</sub> L <sub>a</sub>                      | La               | Degree, 2             |
|          |          | 0 06 002 | Longitude (coarse accuracy) L <sub>o</sub> L <sub>o</sub> L <sub>o</sub>      | L。               | Degree, 2             |
|          | 0 07 030 |          | Height of station platform above mean sea leve                                | :l               | m, 1                  |
|          | 0.07.031 |          | Height of barometer above mean sea level                                      |                  | m 1                   |



#### BUFR Template for synoptic reports from sea stations suitable for ship observation data from VOS stations (in validation)

| 3 08 014 |          | Sequence for representation of synoptic reports from a sea station suitable for SHIP data from VOS stations |
|----------|----------|-------------------------------------------------------------------------------------------------------------|
|          | 3 01 093 | Ship identification, movement, type, date/time, horizontal and vertical coordinates                         |
|          | 3 02 062 | SHIP "instantaneous" data from VOS                                                                          |
|          | 3 02 063 | SHIP "period" data from VOS                                                                                 |

In blue: not included in Manual on Codes yet



## JCOMM rationalization of marine data BUFR sequences

#### e.g. 3-01-200: Ship information

| F | Х  | Υ   | Name                                                                                                             |
|---|----|-----|------------------------------------------------------------------------------------------------------------------|
| 0 | 01 | 079 | Unique identifier for this message                                                                               |
| 0 | 01 | 078 | IMO ship identifier                                                                                              |
| 3 | 01 | 003 | Ship's call sign plus motion<br>0-01-011 identifier<br>0-01-012 direction<br>0-01-013 speed                      |
| 0 | 01 | 044 | Ship's ground course: the direction the vessel actually moves over the fixed earth and referenced to true north. |
| О | 07 | 071 | Maximum height of deck cargo above summer maximum load line                                                      |
| 0 | 07 | 072 | Departure of summer maximum load line from actual sea level                                                      |



## JCOMM rationalization of marine data BUFR sequences

e.g. 3-06-200: Surface water temperature data (high precision)

| F | Х  | Y   | Name                                                    |
|---|----|-----|---------------------------------------------------------|
| 0 | 02 | 038 | Method of water temperature and/or salinity measurement |
| 0 | 07 | 063 | Depth below sea water surface                           |
| 0 | 04 | 080 | Averaging period for following value                    |
| 0 | 22 | 045 | Sea/water temperature                                   |
| 0 | 08 | 080 | Qualifier for quality class                             |
| 0 | 33 | 050 | GTSPP quality class                                     |



## Conclusion and recommendations

- Workplan
  - 2010/2011: Validation of BUFR template for VOS data
  - 2011: Adaptation of e-logbooks
  - 2011/2012: Transition period
  - End 2012: Migration to BUFR completed
- Recommendations/Impact for PMOs
  - Understand basics of BUFR and requirements for the reporting of new variables
  - Implement new e-logbooks
  - Feedback requirements to TT-TDC