

TABLE OF CONTENTS

CHAPTER NO	TITLE	PAGE NO
1	INTRODUCTION	1
1.1	Purpose	1
2	PROCUREMENT OF BUOY COMPONENTS	1
3	TESTING OF BUOY COMPONENTS	2
3.1	Surface treatment	2
3.1.1	Surface treatment for Aluminum Components	2
3.1.2	Colour of Polypropylene Powder Coating	7
3.2	Surface treatment for Stainless Steel Components	7
3.3	Steps to prevent bi-metallic contact	7
3.3.1	Zinc anode	8
3.4	Tests for electronics components	8
3.4.1	Spike test	10
3.5	Individual Sensor Testing Details	11
3.5.1	Air Pressure Sensor	11
3.5.1.1	Default Communication Settings	11
3.5.1.2	Test Cables connection Details	11
3.5.1.3	Sensor Configuration for GENI	11
3.5.1.4	Before Configuration using hyper terminal	12
3.5.1.5	Change to be done	12
3.5.1.5	Final settings for GENI	12
3.5.2	Wind Speed / Direction Sensor	13
3.5.2.1	Testing Procedure using data buoy	14
3.5.3	Humidity / Air temperature Sensor	16
3.5.3.1	Technical data	16
3.5.3.2	Testing procedure using data buoy	17
3.5.4	Motion Reference Unit (Wave Sensor)	19
3.5.4.1	MRU Configuration Procedure for Wave Buoy (MRC S/W)	20

CHAPTER NO	TITLE	PAGE NO
3.5.4.2	Data Interface	20
3.5.4.3	Parameter Management	22
3.5.5	CT Sensor	23
3.5.5.1	CT Sensor Reading Range	24
3.5.5.2	Conductivity and Temperature Sensor Configuration	24
3.5.6	Sailor Mini-C Modem	25
3.5.6.1	Introduction	25
3.5.6.2	System Specification	25
3.5.6.3	Test Procedure	25
3.5.7	Beacon Lamp	26
3.5.7.1	System Specification	26
3.5.7.2	Test Procedure	26
3.5.8	Compass	26
3.5.9	Individual Sensor Test Report	28
3.5.10	Sensor Interface Test	38
3.5.10.1	Cable Conductivity Test	38
3.5.11	Safety Measures	40
3.5.11.1	Vent Valve	40
4	INSPECTION OF FABRICATION WORKS	40
5	DOCUMENTATION OF TEST REPORTS AND INSPECTION REPORTS	42
6	ASSEMBLY OF BUOYS	42
6.1	Pre-Assembly Inspection	43
6.2	Buoy Assembly Procedure	43
6.3	Post Assembly Inspection	44
6.3.1	Burn in Test	45

CHAPTER NO	TITLE	PAGE NO
7	MOORING SYSTEMS	53
7.1	Mooring Diagram for Wave Buoy	53
7.2	Mooring Diagram for Met Buoy	54
7.3	Mooring Diagram for Tsunami Buoy	55
7.4	Mooring Diagram	56
7.4.1	Inputs	56
7.5	Analysis Results	58
8	CRUISE PREPARATION	59
8.1	Documents to be taken for Cruise	59
9	DEPLOYMENT	59
9.1	Buoy Assembly for Deployment at deck	59
9.2	On board test report	59
9.2.1	Avoiding the Bi-metallic contact and corrosion	64
9.3	Mooring length calculation based on depth at deployment location	64
9.4	Watch circle radius calculation	64
9.5	Preparation of Mooring ropes and hardwares	64
9.6	Finding the depth of deployment location	64
9.7	Seabed observation	65
9.8	Final assembly check-up for the deployment	65
9.9	Arrangement of mooring hardwares	65
9.10	Deployment of Buoy	67
9.11	Mooring rope payout	67
9.11.1	Keeping eye on mooring rope angle with the deck (upto Nylon rope)	68
9.11.2	Deployment of Sinker Weight, BPR and Anchor	68
9.12	Preparation of Lesson Learnt (LL) report	68

CHAPTER NO	TITLE	
10	RETRIEVAL OPERATION	70
10.1	Buoy Search Operation – Report	72
10.1.1	Search Operation Details	72
10.2	Inspection of retrieved buoy	72
10.3	Dismantling of Buoy	72
10.3.1	Collection the vandalized (damaged) components	72
10.3.2	Sending the collected components of Failure Analysis (FA)	72
10.4	Preparing observation report with photos	72
10.4.1	Documenting the observation and failure analysis reports	72
10.4.2	Lesson Learnt (LL) report preparation from the FA report	73
10.4.3	Retrieved buoy come back to NIOT	73
10.4.4	Making modification in design of buoy using LL report	
11	CRUISE REPORT PREPARATION	
12	DATA RECEPTION, INTERPRETATION AND QUALITY CONTROL	73
12.1	Procedure	74
12.2	Manual QC	74
12.3	Transmission fails	75
12.4	Manual Quality Control	75
12.5	Escalation and Notification	76
12.5.1	E-mail sample	77
12.5.2	Follow-up E-mail sample	77
12.5.3	Escalated E-mail sample	78
12.5.4	Fax Sample	78
12.5.5	Frequency & Logging of Events	79
12.6	Met Data Sheet	79
	REFERENCE	97
	GLOSSARY	98

LIST OF TABLES

TABLE NO	TITLE	PAGE NO
2.1	List of sensors	2
3.1	Tests for mechanical components	3
3.2	Sensor Range test	10
3.3	Range of parameters	10
3.4	The range and parameters	22
3.5	CT sensor cable details	24
3.6	Mast Cable Details	38
3.7	Compass Cable Details	39
3.8	Conductivity and Temperature Cable Details	39
3.9	Pressure Sensor Cable Details	39
3.10	Battery cable Details	39
4.1	Inspection Procedure for Mechanical Components	40
6.1	Buoy Assembly Procedure	43
9.1	On board test report	60
9.2	Mechanical work check list for data buoy assembly	66
9.3	Deployment Sheet Data Buoy	69
10.1	Retrieval Report – Data Buoy	71

LIST	OF	FIG	URES
------	----	-----	------

FIGURE NO	TITLE	PAGE NO
3.1	Air Pressure Sensor	11
3.2	Wind Speed / Direction Sensor	12
3.3	Humidity / Air Temperature Sensor	16
3.4	Humidity Sensor connector details	17
3.5	Wave Sensor	19
3.6	CT Sensor	23
3.7	Sailor Mini-C Modem	25
3.8	Beacon Lamp	26
3.9	Data Graph wind speed	28
3.10	Data Graph for Wind Direction	29
3.11	Data Graph for Air Temperature	30
3.12	Data Graph for Air Humidity	31
3.13	Data Graph for Air Pressure	32
3.14	Data Graph for Compass Heading	33
3.15	Data Graph for Water Conductivity	34
3.16	Data Graph for Surface Temperature	35
6.1	Assembled Buoy for burn in test	46
7.1	Wave Buoy Mooring Diagram	53
7.2	Met Buoy Mooring Diagram	54
7.3	Tsunami Buoy Mooring Diagram	55
7.4	Andaman (RP2) Buoy Mooring Diagram	56
7.5	Sample Sheet of Mooring Analysis	58
9.1	Onboard Test	59
9.2	Deployment of Buoy	67
10.1	Retrieval Operation	70

ANNEXURE	DAGE
TITLE	NO
Mechanical Components for Buoy : Bill of Materials	82
Work flow chart for new data buoy testing	85
Deployment Procedure	86
Work flow Chart for Retrieved Buoy	87
Buoy retrieval operation	88
BPR Retrieval Operation	89
Calculation of Watch Circle Radius	90
Placements of ZINC anode in the buoy	92
Check list for retrieved buoy service	93
Mooring Ropes Details	94
Zinc Anode weight calculation	95
	ANNEXURE TITLE Mechanical Components for Buoy : Bill of Materials Mork flow chart for new data buoy testing Deployment Procedure Work flow Chart for Retrieved Buoy Buoy retrieval operation BPR Retrieval Operation Calculation of Watch Circle Radius Placements of ZINC anode in the buoy Check list for retrieved buoy service Mooring Ropes Details Zinc Anode weight calculation

ACRONYMS USED AND DEFINITION:

BPR CC	- Bottom Pressure Recorder - Central Cylinder
CT sensor	- Conductivity, Temperature Sensor
DR team	- Deployment and Retrieval team
FA	- Failure Analysis
FOS	- Factor of Safety
G.I	- Galvanized Iron
H ₂	- Hydrogen
KF	- Keel Frame
LL	 Lessons Learnt
MBES	 Multi - Beam Echo Sounder
MBL	 Maximum Breaking Load
MRU	 Motion Reference Unit
MT	- Mechanical Team
N ₂	- Nitrogen
NIOT	- National Institute of Ocean Technology
OBM	- Over Board Motor
OOS	 Ocean Observation Systems
PCD	 Pitch Circle Diameter
PL	- Proof Load
PMU	 Power Management Unit
PVC	 PolyVinyl Chloride
SL Nut	- Self Lock Nut
SWL	 Safe Working Load
TIG Weldin	g - Tungsten Inert Gas Welding
WCR	- Watch Circle Radius

UNITS:

А	- Amphere
hPa	- Hecta Pascal
m	- Metre
psi	- Pound per Square Inch
V	- Volts

1. INTRODUCTION

Data Buoys are moored offshore platforms, fitted with meteorological and oceanographic sensors, deployed at specific locations to observe in-situ Met-Ocean data at regular intervals. The observed raw data is then transmitted to shore station located at NIOT Chennai for further processing and dissemination.

Following are the standard suite of sensors on buoys to measure:

- Air and Water Temperature
- Atmospheric Pressure
- Conductivity
- Precipitation
- Relative humidity
- Salinity
- Water quality
- Wave data and
- Wind Direction, Speed and Gust

Since buoys play a primary role in providing in-situ ground-truth measurements, stands as a reference point for validating ocean related data from other observational means and provides inputs to various models to predict and forecast weather and long-term climatic changes, it is very important that the data obtained from these buoys are continuous and accurate.

To provide continuous and accurate data, the buoy system has to undergo a thorough testing and in-house calibration process.

1.1 PURPOSE

This manual describes the procurement, testing, integration, deployment, retrieval and data quality control used to ensure the accuracy of measurements. It may be used as a tutorial for new comers to OOS and as a reference for all of the activities of Ocean Observation Systems. This manual incorporates procurement of materials and sensors, testing, deployment, retrieval and data quality control.

2. PROCUREMENT OF BUOY COMPONENTS

The procurement of component is done from reputed and experienced organizations as per the norms of the Indian Government. Initially the required functionalities and qualities of the each and every components are arrived by NIOT officials and it is published as tender document. The placement of order for every component is done after screening based on the technical specification in the fabrication and every effort is made to reduce the cost without having any compromise in Quality.

SI. No	Name of the Sensor	Make of the Sensor
4	Wind.	LAMBRECHT
1	vvina	R M YOUNG
2	Humidity / Air Temperature	ROTRONICS
3	Air Pressure	VAISALA
4	Wave Measurement	SEATEX MRU
5	Conductivity and Temperature	VALEPORT, ALLEC, SEABIRD
6	Satellite Transceiver	T&T / INMARSAT
7	Precipitation	R M YOUNG
8	Radiation Sensor	EPPLY LAB
9	Compass	KVH

TABLE 2.1 LIST OF SENSORS

3. TESTING OF BUOY COMPONENTS

The design of mooring system is finalized for each Buoy system based on Depth, Current and Wind Speed by using software packages like ORCAFLEX, CABLE and by using Mathematical Models. Based on the Analysis, component of the mooring system is designed.

Test certificates are asked from the suppliers to ensure the quality of the each Component. List of components and its test certificates are given below.

3.1 Surface treatment

Surface treatment on metallic components is given preference to avoid corrosion such as in Mast assembly, Central Cylinder and Mooring Components. Powder Coating is done for aluminium Components and Galvanizing for G.I Components.

3.1.1 Surface treatment for Aluminium Components:

Powder coating process for Central Cylinder, Mast Assembly and Antenna Flange:

The powder coating process involves three basic steps:

- Part preparation or the Pre treatment
- The powder application
- Curing

Removal of oil, soil, greases, metal oxides, welding scales etc. is done prior to the powder coating process through sand blasting or other method. The most common method for applying the powder coating to metal objects is to spray the powder using an electrostatic gun, or Corona gun.

SL. NO.	PART NO	COMPONENTS DESCRIPTION	TEST	REMARKS	
FRP COMPONENTS					
1	001	FRP Hull	Water ingression test for 48 hours		
2	002	FRP Hood		Laminate properties certificate is	
3	061	FRP Battery Box	Leak test upto		
		· ·	pressure of 1 bar		
-		AL Aluminium Control	Destructive Test:		
4	005	Cvlinder	 Tension test 		
	Mast	Assembly	Shear test	1. Hydro test is only for central	
			Hardness test	cylinder at FRP battery box	
			 Impact test 	2 TIG welding for aluminium	
5	011	Upper Mast	 Bend test 	components	
			Chemical		
	010		analysis		
6	012	Lower Mast			
1	013	Sensor ann	Non Doctructivo		
8		washer	Test:		
	Aluminiu	m Accessories	 Visual 		
٥	030	Air inlet on sensor	Inspection		
9	039	arm	• Dye		
10	042	Antenna flange	penetration		
11	047	Compass clamp	test		
12	060	Small)	Ultrasonic scan test		
13	087	Fender Plate Washer			
		STAIN	LESS STEEL COMP	ONENTS	
14	017	Lifting Ring			
15	018	Lifting Lug			
16	019	Fin Lug	_ _ .		
17	020	Mooring Lug	Destructive lest		
18	021	Long	 Tension test, Shear test 		
		- LUNY Tension Steel hand	Shear lest Chomical	1 TIG Wolding is used	
19	022	– Medium	analysis		
20	000	Lid hinge plate with		2. Grade of Stainless Steel is SS316	
20	023	hinge	Non-Destructive		
21	024	Battery Press Rod	test:		
22	038	Air inlet on lid	Visual	3. For all fasteners breaking torque,	
23	041	Vent pipe	Inspection	stress at 0.2% permanent strain	
24	048	Antenna Cable Adaptor	 Dye penetration 	found from testing	
25	053	Current Meter Frame	testUltrasonic		
26	099	Lid Lock Keys	scan test		
27		Nitrogen Plug			
		Fasteners			
28		Mast Cable adaptor			
29		Long Bolt with SL nut and washers			

TABLE 3.1 TESTS FOR MECHANICAL COMPONENTS

SL. NO.	PART NO	COMPONENTS DESCRIPTION	TEST	REMARKS		
RUBBER COMPONENTS						
30	008	 "O" Ring for Antenna cable adaptor Air inlet Central Cylinder Mast Cable adaptor Nitrogen Plug Vent Pipe 	 Material test certificate Hardness test for rubber fender 			
31	037	Rubber fender		70		
.32	014	Keel Weight		12		
33	015	Keel Frame				
			Destructive test:			
34	052	Conductivity and Temperature Sensor Frame	 Tension test Shear test Hardness test Impact test Bend test Electrical Conductivity test Chemical analysis 	Galvanizing is doing after the sand blasting operation. Certificates to be produced for sand blasting as well as Galvanizing (Mass of zinc coding and		
35	142	GI Pipe Surface Modem Clamp (two parts)	 Non-Destructive test: Visual Inspection Dye penetration test Ultrasonic scan test 	quality of zinc)		

			OTHER COMPONENTS	
37	016	PVC Flange		
38	036	Bush for band		
39	040	Anti rotation fin		
10	046	Vent valve with		
40	040	spacer		
11	048	Gland for AC		
	040	Adaptor		
42	050	MRU Holder		
43	051	Water trap		
44	058	Air inlet tube		
45	063	Zinc anode		
46		Battery Box hose		
47		Bush for CC & KF		Electro-Chemical
		Elbow type	Material test certificate for all	properties certificates
48		pneumatic	components	are to be produced for
		connector		Zinc anodes
10		Double flange		
49		(separable)		
50		Bush for lifting ring		
50		hole		
51		Double flange		
		(separable)		
		Bush for keel weight		
52		and cylinder fixing		
		hole		
			MOORING COMPONENTS	
			Mooring Ropes	
53	151	Combination Rope	Test Certificates for:	
54	152	Nylon Rope	Proof Load	
55	153	Polypropylene Rope	Minimum Breaking Load, Safe working	
			Load	
			G.I. CHAIN	
56	174	G.I Chain 13 Link	Test Certificates for:	
57	175	G.I Chain (Short	Material Composition, Breaking Load,	
	_	Link) 1m	Proof Load, Safe, Working Load	
58	176	G.I Chain (Short		
		Link) 3m		

	G.I. BOW SHACKLE				
59	171	G.I Bow Shackle 1"	Test Certificates for:		
60	170	G.I Bow Shackle N	laterial Cor	nposition, Breaking Load,	
00	172	3/4" P	roof Load, S	Safe, Working Load	
C1	170	G.I Bow Shackle			
61	173	5/8"			
			G	A.I. THIMBLE	
		G.I. Thimble 1"	,	Test Certificates for:	
<u></u>	100			Material Composition,	
62	180			Breaking Load, Proof	
				Load, Safe Working Load	
63	181	G.I. Thimble 5/8"			
			S	S SHACKLE	
64	184	SS D-Shackle 5/	8"	Test Certificates for:	
		SS D-Shackle 3/	'8"	Material Composition,	
65	185			Breaking Load, Proof	
				Load, Safe Working Load	
		Bearing Swivel		Test Certificates for:	
66	177			Breaking Load, Proof	
				Load, Safe Working Load	
67		Drop Link Eye – Acousti	c Release		

3.1.2 Colour of Polypropylene Powder Coating

Central Cylinder components	-	White
Antenna Flange	-	White
Mast assembly	-	Black
Air inlet in sensor arm	-	White

3.2 Surface treatment for Stainless Steel Components

The surface treatment for Stainless steel components consists of

- Descaling
- Pickling
- Passivation
- Cleaning

i) Descaling:

Removal of thick visible oxide layer from the surface and consist of two stage process.

- (a) Mechanically loosen the scale
- (b) Lift the loosened scale from the surface

ii) Pickling:

Pickling is the removal of thin layer of material from the surface of stainless steel. Mixtures of Nitric and hydrofluoric acids are used for pickling operation. one of the following methods may be adopted for pickling,

- Tank immersion pickling
- Spray Pickling
- Circulation Pickling

iii) Passivation:

Passivation usually occurs naturally on the surface of the stainless steel, but it may necessary to assist the process with oxidizing acid treatments.

iv) Cleaning:

If the component is contaminated with Grease or oil then Acid treatment should be carried out.

3.3 Steps to prevent bi-metallic contact

Every step is taken to avoid the Bi-metallic Corrosion. Even small area of bi-metallic contact makes a big problem. So keen observation is taken to avoid bi-metallic contact by using Surface treatment like Powder coating for aluminium components and Galvanizing for

Mild steel components (Mooring components), Anti-fouling paint, device and separators like PVC and Plastic between the potential areas of Interest.

3.3.1 Zinc anode

Zinc anodes are placed at the Bottom of the Central Cylinder, Keel Weight and Tsunami Pipe (G.I Pipe) to protect their metal parts from galvanic corrosion. The weight and quantity of zinc anodes used in buoy is given in Annexure - F.

Galvanic corrosion occurs when dissimilar metals are placed in an electrolyte solution such as seawater. Dissimilar metals are those metals which have different corrosion potential (measured in volts) as determined by the Galvanic Series, and the most common scenario is the current passing from the more noble metal to the less noble metal. This transfer of current results in deterioration of the less noble metal. The addition of zinc actually increases current activity between the metals, but because zinc is the least noble of the metal, corrosion damage is primarily confined to the zinc itself when properly installed.

The Weight and Placement of Zinc Anode plays a vital role in this process. The weight of the Zinc Anode depends on the surface Area to be protected and the current density of the parent material. Based on the conditions above said, the required weight is calculated and fixed at the parts of the components. For example, four number of 500g of Zinc Anode is placed at the Circumference of the keel Weight.

3.4 TESTS FOR ELECTRONICS COMPONENTS

After the materials received from the supplier, it will be physically verified by the scientific community from the other department and by the indenter, after the physical verification the entire sensor and electronics component will undergo for the preliminary test by powering up the sensor, the data will be verified by its entire range of operation and also the calibration and warranty certificate will be verified.

After the new sensor test if any problem in this sensor it will be return to the OEM otherwise it will be handed over to store inward.

NEW SENSOR TEST CERTIFICATE		
SENSOR NAME	-	
TOTAL No. OF SENSOR PROCURED	:	
INVOICE No & DATE	:	
ENGINEER NAME	:	

SL. NO. SE		TEST REMARK		
	SENSOR SERIAL NO	YES	NO	
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
TESTED ENGINEER SIGNATURE (NIOT)				

SI. No.	Parameters	Range in units
1	Air pressure	990 to1020hpa
2	Air Temperature	10 to 38ºC
3	Wind Speed	0.00 to 35m/s
4	Wind Direction	0 to 359 ⁰
5	Wave Height	0.00 to 20m
6	Wave Period	0.00 to 25s
7	Water Temperature	15 to 33°C
8	Humidity	30 to 100%
9	Current Speed	0 to 600cm/s
10	Current Direction	0 to 359 ⁰
11	Salinity	20 to 38 PSU

TABLE 3.2 SENSOR RANGE TEST

3.4.1 SPIKE TEST

This test is failed when the difference between two adjacent measurements is too step.

SI. No	Parameters	Range in units
1	Air pressure difference	> 5hpa
2	Air Temperature difference	> 5°C
3	Wind Speed difference	> 7m/s
5	Wave Height difference	> 3m
6	Wave Period difference	> 8s
7	Water Temperature difference	> 3 ⁰ C
8	Salinity difference	> 1 PSU

TABLE 3.3 RANGE OF PARAMETERS

3.5 INDIVIDUAL SENSOR TESTING DETAILS

3.5.1 AIR PRESSURE SENSOR

Make : VAISALA

Model : PTB220 A

Fig. 3.1 AIR PRESSURE SENSOR

Input power	:	10 -30V dc
Output power	:	RS 232
Range	:	50 to 1100hpa.

3.5.1.1 Default Communication Settings

Baud rate	:	9600
Parity	:	even
Data bits	:	7
Stop bits	:	1
Duple	:	full duplex

3.5.1.2 Test cables Connection Details

3.5.1.3 Sensor Configuration for GENI

* Before setting the sensor refer to manual

Baud rate	:	9600
Parity	:	none
Data bits	:	8
Stop bits	:	1
Duplex	:	full duplex

3.5.1.4 Before configuration using hyper terminal

Software version	PTB220 / 3.05
Serial number	C1050004
Configuration	1
Linear adjustments	OFF
Multipoint adjustments	ON
Calibration date	2009-03-13
Baud Parity Data Stop Dpx	9600 E71F
Echo	ON
Sending mode	STOP
Measurement mode	NORMAL
Pulse mode	OFF SLOW LOW 0.0
Address	0
Output interval	1 S
Output format	4.2 P " " UUUU #r #n
Error output format	
SCOM format	
Pressure unit	hPa
Temperature unit	O
Averaging time	1.0 s

3.5.1.5 Change to be done

SERI 9600 N 8 1
9600 N 8 1 F
AVRG 60 S
Averaging time: 60.0
INTRV 30 S
Output intrv. : 30 s
ECHO OFF
Echo : OFF

3.5.1.6 Final settings for geni

Software version	PTB220 / 3.05
Serial number	C1050004
Configuration	1
Linear adjustments	OFF
Multipoint adjustments	ON
Calibration date	2009-03-13
Baud Parity Data Stop Dpx	9600 N 8 1 F
Echo	OFF

Sending mode	STOP	
Measurement mode	NORMAL	
Pulse mode	OFF SLOW LOW	0.0
Address	0	
Output interval	30 s	
Output format	4.2 P " " UUUU #r #n	
Error output format		
SCOM format		
Pressure unit	hPa	
Temperature unit	O ₀	
Averaging time	60.0 s	
Output		
Send		
1009.00 hpa. (Range: 990 to 1025 Hpa	a)	

3.5.2 WIND SPEED / DIRECTION SENSOR

MAKE : LAMBRECHT

MODEL: 1453 S2 F1000

Fig 3.2 WIND SPEED / DIRECTION SENSOR

Professional Line	Series (1453 S2) Combined Small Wind Sensor	
Varieties	Wind direction	Wind speed
00.14532.000 030 Measuring element: Measuring range: Accuracy: Resolution: Starting value:	(1453 S2F1000) precision ring potentiometer F1000 wedge-shaped wind vane 0360° ± 1% 0.1° 1 m/s	DC-generator G2 3-armed cup rotor 035 m/s ± 2% FS 0.1 m/s 1 m/s

3.5.2.1 Testing procedure using data buoy

- * Before setting the sensor refer to manual
- Connect the sensor to GENI CPU
- Connect to Glink software and follow the commands

Pman Debug cmd> (a)nalog i/o menu (d)igital i/o menu (P)ower o menu (s)erial i/o menu (p)rocess control menu (D)atabase menu (e)rror log menu (b)oot computer (q)uit cmd> a (m)onitor (l)ower channels (q)uit and go to main menu analog/cmd> m Rate? (1000) [ms] Channel? (-1 to exit) 11 Channel? (-1 to exit) -1

Acquiring A/D measurements at 1.00 Hz (press any key to abort)

0.000	
0.019	
0.020	
0.013	directly take the connection from the wind sensor
0.005	6 th and 7 th pin measure voltage
0.089	range (0 to 1)volt
0.068	
0.074	
0.097	
0.119	
0.146	
0.193	
0.185	

0.292
0.235
0.186
0.218
0.255
0.194
0.269
0.313
0.266
0.163
0.123
0.104
analog/cmd> m
Rate? (1000) [ms]
Channel? (-1 to exit) 12
Channel? (-1 to exit) -1

Acquiring A/D mea	asurements at 1.00 Hz (p	oress any key to abort)
Ĺ	Directly check the wind s	sensor 1 st and 2 nd 0.004
0.004		
0.046	position of	output from
0.046	Wind vanes (deg)	wind sensor (ohm)
0.068		
0.068	0	000
0.081	90	300
0.082	180	530
0.083	270	875
0.107	360	1000
0.148		
0.1/8		
0.202		
0.214		
0.226		
0.231		
0.200		
0.240		
0.203		
0.207		
0.292		
analog/cmd> g		
cmd> a		
Quitting		
#		

pin

3.5.3 HUMIDITY / AIR TEMPERATURE SENSOR

MAKE: ROTRONIC

Fig. 3.3 HUMIDITY / AIR TEMPERATURE SENSOR

3.5.3.1 Technical data

Humidity sensor	ROTRONIC-HYGROMER® IN-1
Temperature sensor	RTD Pt 100 1/3 DIN
Operating ranges:	
Humidity	0100%RH
Temperature	-40+60 °C
Input voltage	12v
Output signals:	
Humidity	0 to 1v dc (0 to 100%)
Temperature	0 to 1v dc (-40 to+60deg c)

Connector wiring

Find the plug connection diagram belonging to your probe Example: Code for the standard version with 7-pin Tuchel connector: T7

Connection designations		
+	Supply Voltage + VDC	
GND	Common ground (-), - VDC	
RH	Humidity (+)	
Т	Temperature (+)	
0	Cable compensation	

View of the connection side of the opposite connector Standard version with 7-pin Tuchel connector

Fig 3.4 HUMIDITY SENSOR CONNECTOR DETAILS

3.5.3.2 Testing procedure using data buoy

* Before setting the sensor refer to manual

- Connect the sensor to GENI CPU
- Connect to Glink software and follow the commands

Pman

Debug (a)nalog i/o menu (d)igital i/o menu (P)ower o menu (s)erial i/o menu (p)rocess control menu (D)atabase menu (e)rror log menu (b)oot computer (q)uit cmd> a analog/cmd> (m)onitor (I)ower channels (q)uit and go to main menu analog/cmd> m Rate? (1000) [ms] Channel? (-1 to exit) 3 Channel? (-1 to exit) 4 Channel? (-1 to exit) -1 Acquiring A/D measurements at 1.00 Hz (press any key to abort)

Humidity temp	perature
0.534 0.262	
0.534 0.261	
0.534 0.261	here channel 3 is humidity and 4 is Temperature
0.534 0.261	reading from humidity thro geni cpu for 27 to 38deg
0.534 0.262	
0.535 0.262	
0.534 0.263	
0.537 0.264	
0.537 0.265	
0.534 0.266	
0.092 0.590)
0.092 0.549	
0.083 0.680	
0.058 0.884	
0.045 0.771	
0.068 0.591	
0.086 0.525	
0.108 0.475	
0.136 0.432	
0.168 0.402	
0.200 0.380	
0.258 0.351	
0.281 0.340	
0.299 0.328	
analog/cmd>	q
cmd> q	
Quitting	
#	

3.5.4 MOTION REFERENCE UNIT (WAVE SENSOR)

MAKE: SEATEX	MODEL : MRU-4/6
Power requirements	12 - 30V DC, 6 W
Analog channels	#4, ±10V, 14 bit resolution
Digital output variables	#16 (max), RS232 or RS422
Output data rate (max)	100 Hz (10 ms)
Internal update rate	400 Hz (angular)

Fig.3.5 WAVE SENSOR

For GENI system settings

Baud rate	9600
Parity	none
Data bits	8
Stop bits	1
Duplex	Full duplex

- * Before setting the sensor refer to manual
 - Connect to MRC Software.

3.5.4.1 MRU CONFIGURATION PROCEDURE FOR WAVE BUOY (MRC S/W)

VESSEL

> Geometry

	Length	n (m)	W	vidth (m)		Height (m)
	0			0			0	
	From CG to AF	P (AFT point)			=	0.000		
	From CG to CI	_ (Center Line	e) =		0.000			
	From CG to	the keel	=		0.000			
۶	Description							
	Ressal descrip	tion						
	User annotation Wave			n sea	watch 0.	01h		

SENSOR

> Geometry

	X(m)	y(m)	z(m)
From MRU to CG	0.000	0.000	0.000
From MRU to MP	0.000	0.000	0.000
Mounting Angles	0.000	-90.00	0.000
	Roll	Pitch	Yaw

➢ Heave config

Filter	General purpose
Period	10.000
Damping	1.000

3.5.4.2 DATA INTERFACE

> Digital

Port setup	sys 9600n81
Protocol	MRU Normal
Token	34
Digital channels	6
Interval	1000

02	PosMonD	[m]	FFLOAT
100	PosMonN	[m]	FFLOAT
101	PosMonE	[m]	FFLOAT
68	Heading	ang	FFLOAT
66	RollHippy	[-1 1]	FFLOAT
67	PitchHinny	[-1 1]	FFLOAT

> Auxiliary

```
Aux 1 port setup aux1 9600 n 8 1
Aux 2 port setup aux2 9600 n 8 1
Aux 3
Mode not used
External heading age 20 ms
```

Analog

Analog output enabled no

SPECIAL OPTIONS

> Filter

Surge filter

Period 2.5 s

Damping 0.6

Sway filter

Period 2.5 s Damping 0.6

Vibration

Low pass	25HZ
LOW pass	2002

> Limitation

Velocity	10.000ms
Position	10.000 m

Emulation

Emulate MRU type off

> Magnetic condition

Latitude 0.000deg Magnetic deviation 0.000 deg Fluxgate usage Strong adhersion

3.5.4.3 PARAMETER MANAGEMENT

- > Download to MRU
- > Save the file
- Fix the MRU with Holder where R points downwards.
- Switch ON MRU and check for MRU readings in glink display.

SL NO	PARAMETER	RANGE	UNIT
1	Hm0	0 - 20	m
2	Tm02	0 -30	S
3	Mdir	0-360	Deg
4	Hm0a	0 - 20	m
5	Tm02a	0 - 30	S
6	mdira	0 - 360	Deg
7	hmax	0 - 30	m
8	thmax	0 - 30	S
9	thtp	0 - 360	Deg
10	Mdirb	0 - 360	Deg
11	Ui	0 - 1	
12	tp	0 - 30	S
13	Sprtp	0 - 90	Deg
14	thhf	0 - 360	Deg
15	Hm0b	0 - 20	m
16	Tm02b	0 - 30	S
17	Tmm10	0 - 30	S
18	tz	0 - 30	S
19	heave	-15 to 15	m
20	Compass	0 - 360	Deg
21	pitch	-1 to 1	
22	roll	-1 to 1	

Table 3.4 THE RANGE AND PARAMETERS

3.5.5. CT SENSOR

MAKE: VALEPORT

```
MODEL: 620 CT
```


Test cable Connection Details with hyper terminal

D-pin(Pc side)	Sensor sic	le
1	1	
2	3	here pin 1 and 6 are sort
3	2	
4	4 (+12	2v dc)
5	5	
6	6 (-1	2v dc)
Testing procedure using c	lata buoy	
*Before setting the sensor	r refer to manual	
Connect to Hyper termina	I	
Baud rate	9600	
Parity r	none	
Data bits	8	
Stop bits	I	

Duplex full duplex

• The Model 620 will begin sampling immediately on power up, in whichever mode was previously used.

- The unit will also automatically begin sampling if interrupted and left inactive for 5 minutes.
- The unit can be interrupted by sending the command "#" until it responds with a NAK (§) or ACK (.).
- The user may then change the following parameters by sending the appropriate commands:

Here following commands are used for valeport setting to geni system

- 1. #034 (to set the baud rate)
- 2. #036 (read the baud rate)
- 3. #010 (to set the sampling frequency)
- 4. #011 (read the sampling frequency)

Subconn 6 pin male line	Function	9 Way D Type	4mm Banana Plugs		
Pin		Pin	Pin	Wire colour	
1	RS232 GND	5 (Link to 1,6,8,9)			
2	RS232 Tx (Out of sensor)	2			
3	RS232 Rx (Into sensor)	3			
4	+V (8 – 15vDC)		Red Plug	Red, linked inside D type hood	
5	N/C				
6	Power GND		Black Plug	Black, linked inside D type hood	

Table 3.5 CT SENSOR CABLE DETAILS

3.5.5.1 CT Sensor Reading Range

Conductivity Range : 0 - 80 mS/cm.

Temperature Range : 15 to 45°C.

3.5.5.2 CONDUCTIVITY AND TEMPERATURE SENSOR CONFIGURATION

#034 9600	//SET BAUDRATE
#036	//VIEW BAUDRATE
9600 #010 1	// SET SAMPLING FREQUENCY
1 #011	//VIEW SAMPLING FREQUENCY
1 620CT	

T=	+30.130	C=	+00.037
T=	+30.114	C=	+00.018
T=	+30.103	C=	+00.001
T=	+30.100	C=	+00.009
T=	+30.098	C=	+00.018
T=	+30.098	C=	+00.007
T=	+30.099	C=	+00.009
T=	+30.101	C=	-00.004
T=	+30.102	C=	-00.008
T=	+30.102	C=	+00.001
T=	+30.106	C=	-00.004
T=	+30.106	C=	+00.009

3.5.6 SAILOR Mini-C MODEM

Fig. 3.7 SAILOR MINI – C MODEM

3.5.6.1 Introduction

The TT3026 D/M/S easy Track Transceiver is a complete Inmarsat mini – C Transceiver with built in LPA / HPA electronics and an omni directional antenna.

3.5.6.2 System Specification

- 1. Power Supply Details DC Voltage: 10.5 – 32V DC.
- 2. Baud rate: Baud rate: 4800 bits per second.

3.5.6.3 Test Procedure

- 1. Connect the Power Supply, Data & Control Signals to Mini C MODEM & TT3616D Interconnection Box as per the Manual.
- 2. Connect the Interconnection Box to the Date Terminal Equipment (PC) through D9 Female Connector as per the Manual.
- 3. Install the EasyMail Software (if not installed in PC).Run the EasyMail Software.
- 4. Check the GPS Connection, Antenna Signal Strength and PC Connect Signals, which are indicated by Green & Red Colour Indications as per the Manual.
- 5. Configure the Basic Setups for EasyMail and Perform the LINK Test as per the Manual
- 6. Alternatively the Mini C MODEM can be tested using HyperTerminal Software through the list of commands given in the manual.

7. Check the Mini C MODEM in loop back by sending data to same modem and check transmission and reception using Ilink software provided.

Note: For further Details, refer the Manual

3.5.7 BEACON LAMP

Fig. 3.8 BEACON LAMP

3.5.7.1 System Specification

• Power Supply Details DC Voltage: 12V DC.

3.5.7.2 Test Procedure

- Connect the 12V DC Power Supply to the Beacon lamp via the Two Pin / Four Pin Connector (1 -> +12V, 2 -> GND).
- Cover the Beacon Lamp for darkness around it. Visually check the blinking of Beacon Lamp.

3.5.8 Compass

Power Inputs	+8 to +18 VDC +18 to +28 VDC Gnd, Common Ground	White Red Black
Function	Signal	Wire Color
Serial I/O Port	RXD, RS232 or 0 to +5V Data Input TXD, RS232 or 0 to +5V Data Output Inverted TXD, 0 to +5V Data Output Gnd, Common Ground	Red/Black Tracer Blue/Black Tracer Blue/White Tracer Black/White Tracer

1.4.2 Aluminum Housed Unit (SE-25 sensor)

Table 2 defines the Power and Data interface connections for the housed C100 electronic compass.

Note The wire

The wire colors are different from Table 1.

Table 2. C100 Interface Wiring - SE-25 Sensor (Housed Unit Only)

Function	Signal	Wire Color
Serial LO Port	RXD, RS232 or 0 to +5V Data Input	Red/Black Tracer
	TXD, RS232 or 0 to +5V Data Output	Blue/Black Tracer
	Inverted TXD, 0 to +5V Data Output	Blue/White Tracer
	Gnd, Common Ground	Black/White Tracer
Digital I/O Port	Clk, 10kHz 0 to +5V Clock Output	Blue
	Data, 0 to +5V Data Output	Orange/Black Tracer
	Strobe, 0 to +5V Strobe Input	Green/Black Tracer
Analog Outputs	Sin, Sine or Analog Output	Orange
	Cos, Cosine or Analog Output	Green
	Ref, Reference or Analog Output	White/Black Tracer
Power Inputs	+8 to +18 VDC	White
	+18 to +28 VDC	Red
	Gnd, Common Ground	Black
Not Used		Green/White Tracer
Not Used		Red/White Tracer

The cable shield is connected to the aluminum housing.

Testing procedure using data buoy

*Before setting the sensor refer to manual

Connect to Hyper terminal

Default settings

Baud rate4800ParitynoneData bits8Stop bits1Duplexfull duplex

1. Fix the compass north(Arrow mark) to the true north.Observe the value

Will be **0** for true north.

2. Change the compass direction like 90,180,270,360 deg,

See the value through hyper terminal

\$HCHDM,001.2,M*2A \$HCHDM,003.7,M*2D \$HCHDM,005.2,M*2E
3.5.9 INDIVIDUAL SENSOR TEST REPORT

SENSOR NAME	:	Wind Speed
MODEL	:	Lambrecht 1453 S2 F100
SERIAL NO	:	731547.0009
TEST PERIOD	:	3 Days (From 29/12/10 to 31/12/10)
TEST OUTPUT DATA	:	Annexure

Tested by	Verified by	Approved by
Remarks if any	:	
(If not working)		
NATURE OF PROBLEM	:	
SENSOR STATUS	: WORKING / NOT W	ORKING

Fig. 3.10 DATA GRAPH FOR WIND DIRECTION

Tested by	Verifie	d by	Approved by
Remarks if any	:		
(If not working)			
NATURE OF PROBLEM	:		
SENSOR STATUS	:	WORKING / NOT WORKING	

Fig. 3.11 DATA GRAPH FOR AIR TEMPERATURE

Tested by		Verified by	Approved by
Remarks if any	:		
(If not working)			
NATURE OF PROBLEM	:		
SENSOR STATUS	:	WORKING / NOT WORKIN	IG

SENSOR NAME	:	Air Humidity
MODEL	:	Rotronic
SERIAL NO	:	46741020
TEST PERIOD	:	3 Days (From 29/12/10 to 31/12/10)
TEST OUTPUT DATA	:	Annexure

Fig. 3.12 GRAPH DATA FOR AIR HUMIDITY

Tested by		Verified by	Approved by
Remarks if any	:		
(If not working)			
NATURE OF PROBLEM	:		
SENSOR STATUS	:	WORKING / NOT WORKING	

SENSOR NAME	:	Air Pressure
MODEL	:	Vaisala PTB220
SERIAL NO	:	C1050038
TEST PERIOD	:	3 Days (From 29/12/10 to 31/12/10)
TEST OUTPUT DATA	:	Annexure

Fig. 3.13 DATA GRAPH FOR AIR PRESSURE

Tested by		Verified by	Approved by
Remarks if any	:		
(If not working)			
NATURE OF PROBLEM:			
SENSOR STATUS	:	WORKING / NOT WORKING	

SENSOR NAME	:	Compass Heading
MODEL	:	KVH C100
SERIAL NO	:	100800814
TEST PERIOD	:	3 Days (From 29/12/2010 to 31/12/2010)
TEST OUTPUT DATA	:	Annexure

Fig. 3.14 GRAPH DATA FOR COMPASS HEADING

Tested by		Verified by	Approved by
Remarks if any	:		
(If not working)			
NATURE OF PROBLEM	:		
SENSOR STATUS	:	WORKING / NOT WORKING	

SENSOR NAME	:	Water Conductivity
MODEL	:	Vale Port 620
SERIAL NO	:	25769
TEST PERIOD	:	3 Days (From 29/12/2010 to 31/12/2010)
TEST OUTPUT DATA	:	Annexure

Fig. 3.15 DATA GRAPH FOR WATER CONDUCTIVITY

Tested by		Verified by	Approved by
Remarks if any	:		
(If not working)			
NATURE OF PROBLEM	:		
SENSOR STATUS	:	WORKING / NOT WORKING	

Fig 3.16 DATA GRAPH FOR SURFACE TEMPERATURE

SENSOR STATUS	:	WORKING / NOT WORKING
NATURE OF PROBLEM	:	
(If not working)		
Remarks if any	:	

Tested by

Verified by

Approved by

COMPONENT NAME	:	Beacon Lamp
TEST PERIOD	:	1 Day (From 30/12/10to 30/12/10)
SENSOR STATUS	:	WORKING / NOT WORKING
NATURE OF PROBLEM:		
(If not working)		
Remarks if any	:	

Tested by Verified by Approved by

COMPONENT NAME	:	Transceiver	
MODEL	:	TT3026	
SERIAL NO	:	456500138	
TEST PERIOD	:	1 Day (From 29/12/10 to 29/12/10)	
TEST OUTPUT DATA	:	Annexure	
SENSOR STATUS	:	WORKING / NOT WORKING	
NATURE OF PROBLEM:			
(If not working)			

Remarks if any :

Tested by

Verified by

Approved by

ANTENNA VERSION:

TT-3026M Non-SOLAS Maritime Inmarsat Mini-C Transceiver, Tr Version 3.00

(C) Copyright 2005 Thrane & Thrane A/S

Version 2.24 Apr 1 2008 11:57:34

ANTENNA POSITION:

SET -P

Position : 12 56 73 N 080 12 71 E	at 12:28:15 UTC
Course : 165	deg/true north
Speed : 000	knots : 0000 kmph : 0000 mph

ANTENNA MOBILE NO:

: SET -U 456500138

The number will now be stored permanently

SIGNAL STRENGTH:

: ST -S

Signal strength : _5_

ANTENNA SERIAL NO:

Serial number	:_07114769_
Terminal type	: _Inmarsat-C Transceiver_
Mobile number	: _456500138_
Mobile type	: _TT-3026M Non-SOLAS Maritime_
ISN number	: _4TT0888AAF43_

TRANSCEIVER STATUS:

: ST -C

SOFTWARE: Version 2.25 Feb 6 2009 11:10:10, Inmarsat-C Transceiver

Synchronization : yes Serial no : 07114769

Logged in : yes Mobile no : 456500138

TDM type : NCS Preferred ocean : Indian

TDM channel number : 10840

Current channel : NCS

Current protocol : Free

TDM origin : 344

TDM frame number : 5203

BB error rate : 2 of 100

Last login at Tue Dec 28 01:57:44 2010

3.5.10 Sensor Interface Test

3.5.10.1 Cable Continuity Test

TABLE 3.6 MAST CABLE DETAILS

SI.No	Mast Cable Pin details	Sensor end	Description	Name Of Sensor
1	1	1	PWR	Elech Light
2	2	2	GND	Flash Light
3	3	NC	NC	
4	4	1	PWR	
5	5	2,5	GND	Humidity & Temperature
6	6	6	Humidity	(Rotronic)
7	7	4	Temp	
8	8	-	shield	
9	9	3	Dir Exit	
10	10	1	Dir Ref(Gnd)	
11	11	2	Dir sign	Wind Sensor(Lambrecht)
12	12	6	Speed sign	
13	13	7	Speed ref(Gnd)	
14	14	NC	NC	
15	15	NC	NC	
16	16	Red	PWR	Inmarsat
17	17	Red	PWR	Modem/AntennaTT 3026
18	18	Black	GND	

19	19	Black	GND
20	20	Yellow	Remote On/Off
21	21	Green	Rx
22	22	Black/Red	Тx
23	23	Orange	Gnd
24	24	NC	NC
25	25	Blue	CTS
26	26	Violet	RTS
27	27	NC	NC

TABLE 3.7 COMPASS CABLE DETAILS

SI.No	Connector end	Description	Sensor End
1	А	Gnd	Black & Black/White
2	D	Power 5	White
3	E	COM 10TX from GENI	Red/Black
4	F	COM 10 RX to GENI	Blue/Black

TABLE 3.8 CONDUCTIVITY AND TEMPERATURE CABLE DETAILS

SI.No	Sensor end (6 pin female)	Description	Lid end(7 pin male)
1	1,6	Gnd	1
2	4	Power 11	4
3	2	COM 6 TX from GENI	2
4	3	COM 6 RX to GENI	3

TABLE 3.9 PRESSURE SENSOR CABLE DETAILS

SI.No	Connector end	Description	Sensor End
1	A	Gnd	5,7
2	D	Power 2	9
3	E	COM 7 TX from GENI	3
4	F	COM 7 RX to GENI	2

TABLE 3.10 BATTERY CABLE DETAILS

SI.No	Sensor end	Description
1	A	Cable lug Acc+
2	В	Cable lug Acc+
3	С	Cable lug Acc-
4	D	Cable lug Acc-
5	E	Power
6	F	Thermistor
7	G	Gnd
8	Н	Thermistor

3.5.11 SAFETY MEASURES

3.5.11.1 VENT VALVE

Vent valve is fixed at the Cylinder Lid to allow positive ventilation to the buoy battery chamber while prohibiting salt or fresh water entering in to the cylinder via vent line when the buoy is submerged and/or tilted more than 45 degrees.

Vent valve is specially designed to the intended purpose with buoyant upper ball and heavy lower ball.

When the buoy becomes submerged, the buoyant upper ball will float up against the seal ring and seal the vent.

When the buoy rolls over approximately 45 degrees, the heavy lower ball shifts along the molded angle of the insert and pushes the upper ball against the seal ring and seals the vent.

4 INSPECTION OF FABRICATION WORKS

Inspection for mechanical components is done at various stages of the fabrication in the workshops. During the inspection, inspection report is prepared. The report contains the persons involved, things taken for inspection, stages of work done, suggestions given and modifications done during the fabrication inspection.

The standard inspection process for the specific components and it's purposes are given in the following Table:

S.No	Part No.	Description of the Component	Inspection procedure	Purpose
1.	001	Hull	 Checking the water ingression test. Checking of dimensions as per the NIOT specification Checking of Tolerance and provisions for handling. 	 To check the quality of product and the work flow. To check the fabrication and material used for fabrication is followed as per NIOT specification and drawing Checking all surface treatment processes done by the NIOT specification
2.	005	Central Cylinder	 Checking of dimensions as per the NIOT specification Checking of TIG welding as continuous weld and the waviness of the weld. Checking of hole arrangement and Pitch Circle Diameter (PCD) in top flange of cylinder. Checking of availability of rib under the φ18mm hole for lifting ring. A PVC flange is taken for inspection to check the PCD of 	

Table 4.1 INSPECTION PROCEDURE FOR MECHANICAL COMPONENTS

S.No	Part No.	Description of the Component	Inspection procedure	Purpose
			 bottom flange holes. 6. Checking the availability of flange and rib for Battery box rod. 7. Oriention of holes for Lid hinge plate and lid lock groove on the lid. 8. Powder coating thickness is checked. 9.Checking of hole for cable routing. 	
3	011- 013	Mast Assembly	 Checking of dimensions as per the NIOT specification. Orientation of sensor arm wings. Checking of guiding holes. Checking of hole for cable routing in sensor arm (2 Nos), Lower mast (1No) and Upper mast (1No). Powder coating thickness is checked. Checking the height of antenna fixing flange at sensor arm. Checking of TIG welding as continuous weld and the waviness of the weld. 	
4	142	GI Pipe	 Checking of dimensions as per the NIOT specification. Diameters of the both flanges were checked as per the drawing since the diameter of two flanges is not same. Pitch circle diameter of the both flange holes are checked by using PVC flange Anode fixing hole diameter and distances between the holes were checked. Checking of MIG welding as continuous weld and the waviness of the weld. Checking of sand-blasting and hot dip galvanizing processes. 	
5.	014 - 015	Keel Weight and Keel Frame	 Checking of dimensions as per the NIOT specification A PVC flange is taken for inspection to check the PCD of bottom flange holes of KW and KF. Checking of MIG welding as continuous weld and the waviness of the weld. Checking of sand-blasting and hot dip galvanizing processes. 	

S.No	Part No.	Description of the Component	Inspection procedure	Purpose
6	017 - 024	SS Components	 Checking of dimensions as per the NIOT specification Checking of TIG welding as continuous weld and the waviness of the weld. Checking of PCD of components and surface treatment(Pickling and Passivation). 	
7	036 - 063	Ancillary items	 Checking of dimensions as per the NIOT specification Checking of TIG welding as continuous weld and the waviness of the weld. Checking of PCD of components and surface treatments. 	
8	156	Sinker Weight	 Checking of dimensions as per the NIOT specification Checking of welding as continuous weld and the waviness of the weld. 1" shackle is taken for inspection to check the diameter of the sinker weight lifting hook hole. Weight of each sinker weight is checked and noted in the inspection report. 	
9	155	Anchor	 Checking of dimensions as per the NIOT specification Checking of welding as continuous weld and the waviness of the weld. Checking the shackle size and weight of each anchor. 	

5 DOCUMENTATION OF TEST REPORTS AND INSPECTION REPORTS

In Ocean Observation Systems, Preference is given for testing and documentation. For every testing and inspection, a report is prepared and documented for future reference. Then report number with month and date of the report prepared is included in the report.

6 ASSEMBLY OF BUOYS

Assembly of buoy consists of various operations which are given in the following tables with respective topics.

6.1 Pre–Assembly Inspection

Before assembling of buoy, each and every part of the buoy is inspected visually. If any damages found, the parts are replaced with the new one. No compromise is given for the usage of old components.

6.2 Buoy Assembly Procedure

The following table describes the assembly process of different types of Buoys. During assembly process, the individuals are supplied with all equipments and Safety precaution.

	DESCRIPTION		ARKS	COMMENTS
51.110	DESCRIPTION	YES	NO	CONINENTS
1	Visual inspection for the evidence of cracks and damages in hull. Inspection on the Tungsten Inert Gas(TIG) welding and pitting of Central cylinder(CC)			
2	Cleaning of Hull, Central cylinder and making available all kind of fasteners and accessories required for assembly			
3	Assembling of lifting ring, lid hinge and lid lock keys with Silicone grease in CC			
4	Position one half of the hull with the groove in hull facing upward			
5	Fixing of Zinc anode at the bottom of the central cylinder , put it on the hull by using over-head crane and lower mast fixing at the respective groove of the hull			
6	Place the other half of the hull over the cylinder by using over-head crane			
7	Fixing of medium tension bands at top and bottom neck of the hull and keep the buoy in upright position.			
8	Assembly of lifting lug, mooring lug and Fin lug and keep the buoy in position using Overhead crane.			
9	Assembly of long tension bands and check all nuts for its correct tightness			
10	Assembly of fenders, making of holes in fender for fixing the fender plate washer.			
11	Assembly of Battery box with handling studs and eye bolts and it get down to the cylinder. The movement of the battery box is restricted with the help of battery press rod.			
12	Geni/Motion Reference Unit (MRU) and compass is fixed in the instrument plate and it is fitted to the collar which is inside the central cylinder			
13	Fixing of lid hinge plate, vent valve, Nitrogen plugs, Air inlet valve, Antenna cable adaptor/Mast cable adaptor, lid handle etc in lid at their respective places			
14	"O"- ring is fixed in Central cylinder top flange groove applying silicone grease			
15	Lid fixing using the lid lock keys in central cylinder			

TABLE 6.1 BUOY ASSEMBLY PROCESS

Keep the buoy in inclined position, and fix the keel			
weight, keel frame and PVC flange at the bottom			
of the central cylinder in the prescribed sequence,			
in case of MET/Wave buoy.			
In case of Isunami buoy, GI pipe and keel frame			
only need to be fixed. Make sure that, the legs of			
the keel frame are covered with plastic hose.			
In the keel frame the surface modem is fixed.			
Fill with Nitrogen (N ₂) gas at a pressure of 7.35 psi			
to avoid condensation of air with Hydrogen (H ₂)			
gas and purging.			
Fix the required sensors in sensor arm, central			
cylinder and mooring.			
For MET buoy,			
 Wind sensor 			
 Humidity sensor 			
 Air pressure 			
 Compass 			
 Current Meter 			
 Conductivity 			
For WAVE buoy.			
 Wind sensor 			
 Humidity sensor 			
• Air pressure			
 Current Meter 			
o MBU			
For Tsunami buov			
 Surface modem 			
In some specific cases Water Quality Sensor may			
also be used.			
Assemble the upper mast with the lower one. hood			
and sensor arm with their respective places.			
	Keep the buoy in inclined position, and fix the keel weight, keel frame and PVC flange at the bottom of the central cylinder in the prescribed sequence, in case of MET/Wave buoy. In case of Tsunami buoy, GI pipe and keel frame only need to be fixed. Make sure that, the legs of the keel frame are covered with plastic hose. In the keel frame the surface modem is fixed. Fill with Nitrogen (N ₂) gas at a pressure of 7.35 psi to avoid condensation of air with Hydrogen (H ₂) gas and purging. Fix the required sensors in sensor arm, central cylinder and mooring. For MET buoy, • Wind sensor • Humidity sensor • Compass • Current Meter • Conductivity For WAVE buoy, • Wind sensor • Air pressure • Current Meter • Conductivity For Tsunami buoy, • Surface modem In some specific cases Water Quality Sensor may also be used. Assemble the upper mast with the lower one, hood and sensor arm with their respective places.	Keep the buoy in inclined position, and fix the keel weight, keel frame and PVC flange at the bottom of the central cylinder in the prescribed sequence, in case of MET/Wave buoy. In case of Tsunami buoy, GI pipe and keel frame only need to be fixed. Make sure that, the legs of the keel frame are covered with plastic hose. In the keel frame the surface modem is fixed. Fill with Nitrogen (N ₂) gas at a pressure of 7.35 psi to avoid condensation of air with Hydrogen (H ₂) gas and purging. Fix the required sensors in sensor arm, central cylinder and mooring. For MET buoy, \circ Wind sensor \circ Air pressure \circ Compass \circ Current Meter \circ Conductivity For WAVE buoy, \circ Wind sensor \circ Air pressure \circ Conductivity For Tsunami buoy, \circ Surface modem In some specific cases Water Quality Sensor may also be used.	Keep the buoy in inclined position, and fix the keel weight, keel frame and PVC flange at the bottom of the central cylinder in the prescribed sequence, in case of MET/Wave buoy. In case of Tsunami buoy, GI pipe and keel frame only need to be fixed. Make sure that, the legs of the keel frame are covered with plastic hose. In the keel frame the surface modem is fixed. Fill with Nitrogen (N ₂) gas at a pressure of 7.35 psi to avoid condensation of air with Hydrogen (H ₂) gas and purging. Fix the required sensors in sensor arm, central cylinder and mooring. For MET buoy, • Wind sensor • Air pressure • Compass • Current Meter • Conductivity For WAVE buoy, • Wind sensor • Air pressure • Conductivity For Tsunami buoy, • Current Meter • Conductivity • MRU For Tsunami buoy, • Surface modem In some specific cases Water Quality Sensor may also be used. Assemble the upper mast with the lower one, hood and sensor arm with t

NIOT TECHNICIANS

NIOT SUPERVISOR

6.3 Post Assembly Inspection

After assembling, checking of mechanical component fitted in the buoy assembly is done by

using the checklist. Also all the sensor and its positioning is checked for its assembly.

6.3.1 Burn in Test

parameter measured by NIOT buoy system	depth/height/ NIOT	Sample period /Rate	sample time
wind speed	ЗМ	10min @ 1 Hz	23.49, 00.49 23.49, 00.49
wind direction	ЗМ	10min @ 1 Hz	23.49, 00.49 23.44, 00.44
irradiation	ЗМ ЗМ	1 min @ 1 Hz 1 min @ 1 Hz	23.44 , 00.44
rainfall air humidity	2.5M 3M	1 min @ 1 Hz 1 min @ 1 Hz	23.44 , 00.44 23.44 , 00.44
air temperature airpressure	3M 3M	1 min @ 1 Hz 1 sample/integrated value of 1 min	23.44 , 00.44 23.57 , 00.57
current dir,current speed	1.2 m	5 min 120 ping	23.55,00.55
temp and conductivity temp and conductivity,cur speed,cur dir	5m 10m	10 sec @ 1 Hz 5 min 120 ping	23.50 ,00.50 23.55 ,00.55
temp and conductivity	15M	1 per 60min	23.55,00.55
temp and conductivity,cur speed,cur dir temp and conductivity,cur speed,cur dir	20m 30M	1 per 30min 1 per 60min/ 5min 120 ping	23.55,00.55 23.55,00.55
temp and conductivity,cur speed,cur dir	50M	1 per 60min/ 5min 120 ping	23.55,00.55
temp and conductivity	75M	1 per 60min	23.55,00.55
temp and conductivity,cur speed,cur dir	100M	1 per 60min/ 5min 120 ping	23.55,00.55
temp and conductivity	200M	1 per 60min	23.55,00.55
temp, conductivity pressure	500M	1 per 60min	23.55,00.55

No of sample for each sensor can be configured through CPU.

Standard Sample Rate

After the individual sensor test and continuity test the integrated buoy will undergo for the burn in test in the open environment for 100 transmissions with the following.

:	29/12/2010
:	10/01/2011
:	11 days
:	3 hours
:	
	Verified by
	:

Ocean Observation System National Institute of Ocean Technology Chennai

Fig. 6.1 ASSEMBLED BUOY FOR BURN IN TEST

7. MOORING SYSTEMS

Ocean Observation Systems, NIOT has three types of Buoys and specific moorings types, which are given in the forthcoming topics.

7.1. Mooring Diagram for Wave Buoy

Fig.7.1 WAVE BUOY MOORING DIAGRAM

7.2. MOORING DIAGRAM FOR MET BUOY

Fig.7.2 MET BUOY MOORING DIAGRAM

7.3. MOORING DIAGRAM FOR TSUNAMI BUOY

Fig.7.3 TSUNAMI BUOY MOORING DIAGRAM

7.4 MOORING DIAGRAM

Fig.7.4 ANDAMAN (RP2) BUOY MOORING DIAGRAM

7.4.1 INPUTS

The following inputs are used to carry out the analysis. They are,

- Buoy details such as weight, material, Dimensions and the weight of the included components.
- Number of sub-surface floats used and its net-buoyancy values.
- Wire rope properties such as Length and weight.
- Details of sinker weight such as dimensions and weight.
- Current speed.

• Proposed Mooring Diagram.

Part.No	DESCRIPTION OF THE COMPONENT	MATERIAL	DIMENSION	QTY	WEIGHT IN AIR	Cd
001	BUOY HULL	Polyethylene filled with EPS foam	Diameter (Incl. Fender) = 2.85m	1	Weight = 708.1 kg (Incl. cylinder)	
011-013	MAST (including Upper mast lower mast and sensor arm	Al 6061	Total height above sea level = 4 m Diameter = 100mm Thickness = 8mm	1	15 kg	
002	HOOD	Aluminium		1	47 kg	
007	INSTRUMENT PLATE	Al 6061		1	8.10 kg	
053	ALUMINIUM CURRENT METER FRAME	Al 6061		1	7.2 kg	
151	WIRE ROPE	Steel wire covered by polypropylene	Length = 10m, Diameter = 18 mm		Weight = 0.74 kg/m Total Weight = 7.4 kg	1.3
174	CHAIN		Total Length = 5m Diameter = 25.4mm (0.0254m)		weight = 13.7 kg/m Total weight =68.5 kg	1.3
182	SUB-SURFACE FLOAT	Polyethylene shell filled with synthetic foam	Diameter = 0.28m(11.03in) Dia. Of centre hole = 0.025m Circumference = 0.88m	2 Nos	Net Buoyancy = 7 kg	
171	SHACKLE 1"	Galvanized iron		5 Nos	Weight = 2.8 Kg/ unit Total Weight = 14 kg	1.3
172	SHACKLE ¾"	Galvanized iron		8 Nos	Weight = 1.1 Kg/ unit Total weight = 8.8kg	1.3
142	GI FLANGE	Galvanized iron		1	22 kg	
156	SINKER WEIGHT	Reinforced Concrete	Dimension = 1m x 1mx 1 m	1	2000 kg	
155	ANCHOR	IS 2062	(Lengui x wiuulxfielgiit)	1	150 kg	
155	ANGIOK	15 2002		1	1.50 Kg	

ANDAMAN BUOY

Cd - Co-efficient of discharge

Table. 1 Material properties

NOTE (Approximate Weights)	
1 Weight of Electronic items inside the cylinderIncluding battery pack	120 kg
2 Weight of Current Meter and Environmental sensor	2 kg

METEOROLOGICAL PARAMETER READINGS TAKEN FROM THE BUOY AT ANDAMAN

S.No	DESCRIPTION	MAXIMUM(m/s)	MINIMUM (m/s)	AVERAGE (m/s)
1	WIND SPEED	6.5625	2.759	0.23
2	WIND GUST	7.92	0.54	3.9
3	CURRENT SPEED	0.29	0.0078	0.1

Table.2 Meteorological Parameter Readings

7.5 ANALYSIS RESULTS

As a result of the analysis it is observed that the maximum load is acting on the wire rope is about 6 kN (0.61T, breaking load is 11.5 T) and only negligible amount of movement has taken place in sinker weight.

Fig.7.5 SAMPLE SHEET OF MOORING ANALYSIS

8 CRUISE PREPARATION

Cruise preparation operation comprises:

- 1. Material list preparation for the cruise based on type of buoy
- 2. Checking of materials and tools with checklist
- 3. Documents taken for cruise.

8.1 Documents to be taken for Cruise

- 1. Cruise track -2 Nos (One for Captain and One for Chief Scientist)
- 2. Mooring diagrams
- 3. Material list (Includes all mechanical items)
- 4. Tools list (including the tools which are used for Deployment and assembly)
- 5. Buoy details document
- 6. Telephone numbers
- 7. Cruise number to be noted
- 8. Old Cruise report (soft copy)- 1 No
- 9. Mail to be sent to Group Head OOS, Shore Station In charge and Shore Station Team.

9 DEPLOYMENT

9.1 Buoy assembly for deployment at deck

At the deck of ship, keel weight and keel frame is attached to the bottom of the Central cylinder. The combination rope thimble is connected to the keel frame end. Antenna with sensors is fixed to the buoy.

9.2 On board Test report

After getting confirmation from the data quality all the material shipment to the vessel for deployment, the check list will be confirm that the entire material is loaded.

Fig. 9.1 ONBOARD TEST

During the sailing the entire buoy system will be on testing until the location of the deployment and data quality will be verified during this period and record will be maintained in the shore station.

TABLE: 9.1 ON BOARD TEST REPORT

STUTE OF OCERS	OCEAN	OBSERVATION SYS	Date		
CHHOO CO	ON	BOARD TEST REPO	RT	Report No	
GIENNI					
Cruise Period	July 2010		Location	Lat	Long
Type of Buoy	MET / WAVE / TSUNAMI		Buoy ID		
SI. No.		COMP. SI.No /	Tested at NIOT	Onboard Test	Remarks
1	MECHANICAL COM	PONENTS			
1	FRP buoy assembly				
2	Central cylinder with hull				
3	Long band fixing				
4	Medium band fixing				
5	Lifting ring, lifting lug fixing				
6	Mooring lug,Anti- rotation fin fixing				
7	Fender fixing				
8	Battery box fixing				
9	Vent hose fixing				
10	Battery press rod fixing				
11	Lid and lid locking screws fixing				
12	Vent Valve assembly				
13	Nitrogen plugs, Air inlet and Antenna cable adaptor fixing				
14	Anode fixing at central cylinder, G.I.Pipe and keel weight				

SI. No.	ITEM DESCRIPTION	COMP. SI.No / ID No. / Code No	Tested at NIOT (OK / NOT OK)	Onboard Test (OK / NOT OK)	Remarks
15	Upper mast /Lower mast fixing				
16	Hood with Al.long bolt/Nut/Washer assembly				
17	CPU and compass fixing				
18	Keel weight/frame fixing				
19	Junction box fixing				
20	Antenna fixing				
21	Current meter fixing clamps/frames				
22	Conductivity and temperature sensor fixing				
23	MRU fixing				
24	Wind sensor, Humidity sensor and pressure sensor fixing				
25	Beacon lamp fixing				
26	Sinker weight assembly				
27	Sub-surface float assembly				
28	Radar reflector fixing				
29	Shackle tightening				
30	Cotter pin fixing				
31	Length of rope checking				
32	G.I.Thimble splicing				

SI. No.	ITEM DESCRIPTION	COMP. SI.No / ID No. / Code No	Tested at NIOT (OK / NOT OK)	Onboard Test (OK / NOT OK)	Remarks
33	Anchor, Sinker weight chain fixing				
34	Nitrogen gas filling in central cylinder				
35	Connecting ring connection checking				
36	Bearing swivel fixing in proper place				
37	Combination rope checking				
38	Nylon rope checking				
39	Polypropylene rope checking				
40	Acoustic release connection checking				
41	Surface modem fixture fixing				
42	BPR dead weight fixing with BPR and BPR float				
43	Cable gripper fixing in Central cylinder and keel frame				
44	PVC plate fixing between Central cylinder and keel frame				
45	Rubber sheet and hose pipe around the keel frame for tsunami buoy				

SI. No.	ITEM DESCRIPTION	COMP. SI.No / ID No. / Code No	Tested at NIOT (OK / NOT OK)	Onboard Test (OK / NOT OK)	Remarks
II	ELECTRONICS / INSTRUMENTATION				
46	CPU				
47	MRU				
48	Compass				
49	Wind Sensor				
50	Humidity / Air temperature sensor				
51	Air pressure Sensor				
52	Mini - C (Modem / Antenna)				
53	CT Sensor				
54	Beacon lamp				
55	Battery Pack				
56	Data transmission				
57	Data reception and decoding				
58	Cables and connectors				
59	BPR				
60	BPR Battery				
61	Surface Acoustic modem				
62	Surface modem cable				
63	Acoustic modem power pack				
ш	Overall Buoy Status				
9.2.1 Avoiding the Bi-metallic contact and corrosion

Before deployment a thorough looking in buoy is taken to avoid the bi-metallic corrosion. If anything is found, it is rectified immediately before the deployment.

9.3 Mooring length calculation based on depth at deployment location

Based on the depth measured in the anchor drop location, the calculation of mooring length is done. Mooring comprises of three ropes. They are:

- 1. 18mm Combination rope (Wire rope)- Up to 550m
- 2. 16mm Nylon rope 320m for wave buoy and Tsunami buoy
- 3. 18mm Polypropylene rope- Remaining depth for wave buoys (150m rope extra).

For Tsunami buoy 160m Polypropylene rope is deducted from the remaining rope. It is deducted because of getting good communication between Bottom Pressure Recorder and Surface Modem.

9.4 Watch Circle Radius Calculation

Using the mooring length of each rope, the Watch Circle Radius of the buoy is calculated. The Mechanical team of Ocean Observation System has a "C" program to find the watch circle radius of the buoy.

9.5 Preparation of Mooring ropes and hardwares

Based on the watch circle radius calculation, the required length of PP rope is prepared and nylon rope is laid down on the deck for easy operation. Then based on the mooring diagram, the required mooring hardwares are prepared.

9.6 Finding the depth of deployment location

Depth and bathymetry survey is taken from the Multi-Beam Echo Sounder (MBES). The details of the MBES are given below.

Make of Multi-Beam Echo Sounder	: SEABIRD – 7150
Frequency	: 12 KHz
Maximum Depth	: 12800 m

9.7 Seabed Observation

The observation of seabed is taken from wedge display of Multi-Beam Echo Sounder. The sea bottom observation is done using the Echo sounder before and after 1 nm radial of the deployment location. The anchor deployment position selected based on the topography. The results of the Echo sounder are taken for documentation. A soft copy is also taken as backup.

9.8 Final assembly check-up for the deployment

Before deployment, the assembly is checked again for all the mechanical components with the help of Checklist prepared by the Mechanical Team.

9.9 Arrangement of mooring hardwares

Shackle-Swivel Connection:

1. The recommended connection between the shackle and swivel is the bow to eye connection. But if the bow will not fit through the top eye of the swivel the bolt-pin to eye connection may be used.

2. When constructing the mooring, orient each swivel with the head of the eye to eye connecting bolt upward, otherwise the swivel may bind.

Chain-Shackle connection:

The bolt-pin through the link connection is recommended.

A swivel is placed between the chain or wire rope and the sinking nylon responds to the motion of the buoy and prevents twisting of the chain or wire and mooring rope. A swivel is placed between the Polypropylene rope and the chain, prevents twist in the chain and the mooring rope.

TABLE 9.2 MECHANICAL WORK CHECK LIST FOR DATABUOY ASSEMBLY

S.No	DESCRIPTION	REMARKS
1	Hull assembly FRP hull / Plastic Hull	
2	Fender	
3	Battery box fixing	
4	Vent hose fixing	
5	Battery press rod fixing	
6	Lid fixing and checking	
7	Vent pipe and Valve assembly	
8	Nitrogen plugs fixing	
9	Hull painting	
10	Anode fixing at cylinder	
11	Upper mast /Lower mast fixing	
12	Hood checking	
13	Al.long bolt/Nut/Washer	
14	Keel weight/frame fixing	
15	Keel weight painting/anode fixing	
16	Antenna fixing	
17	Current meter fixing clamps/frames	
19	Pallets for transporting/rubber pads	
20	Solar panel fixing	
21	Gemini craft readiness	
22	OBM	
23	Splicing of various lengths of ropes	
24	Nylon rope	
25	Polypropylene rope	
26	Combination rope	
27	Chain cutting and fixing	
28	Sinker weight assembly	
29	Subsurface float assembly	
30	Nitrogen gas filling	
31	Radar reflector fixing	

- 1. The Central Cylinder should always be filled with N_2 gas to the specified maximum pressure (7.35psi) before deploying the buoy. The gas is flushed to prevent air moisture from condensing in the respective compartments. Safety valve is used in gas supply tube. This protects the electronics and enables emission of generated H_2 and O_2 gas.
- 2. The lid lock keys should be tightened for the required tightening torque.
- 3. Fixing of Radar reflector.
- 4. Fixing of sensor arm, hood and quick release on buoy is done at last. The guiding ropes are used to guide the buoy for smooth deployment.

9.10 Deployment of buoy

The buoy is heaved from the deck slowly. When it reaches the sea water surface, the quick release is activated to release the buoy to the sea water surface and the buoy reached the water surface. When the buoy reached the water surface, the propeller is turned 'ON' to keep the buoy away from the ship.

Fig 9.2 DEPLOYMENT OF BUOY

9.11 Mooring rope payout

Wire rope and PP rope is paid out from the coil fitted in spool stand. Nylon rope is laid on deck for the deployment and at the same time all the required mooring component like shackles were prepared. Then mooring ropes is paid out.

9.11.1 Keeping eye on mooring rope angle with the deck (upto Nylon rope)

During the pay out of mooring ropes, care should be taken about the mooring rope angle with the deck. If the rope is gone inside the aft, the rope may get cut with the propeller. This care should be taken up to Nylon rope. There is no need to care on PP rope because it will float.

9.11.2 Deployment of Sinker weight, BPR and Anchor

At last anchor and sinker weight are deployed. For Tsunami buoy, the distance between the Buoy and BPR is about 300 m. The BPR is assembled with the BPR float, BPR deadweight and Acoustic release. Then the BPR is heaved to the water by using the deep sea winch. The error between the winch reading and BPR reading is found out.BPR is heaved up to the 100m from the sea bottom. Finally BPR is released from the acoustic release for free falling. Reach of BPR to the seabed is confirmed and then waiting for the confirmation of data from the shore station. For each deployment operations, the ship will move to the next location after getting confirmation from the shore station. All BPR floats are tested in Hyperbaric chamber in Hyperbaric test facility by using ASME BPVC VIII-3 standard.

9.12 Preparation of Lesson learnt (LL) report

During deployment, some problems may be faced and it is rectified by some mean. But it should not be repeated. Mechanical Team decided to make Lessons Learnt report to record the problem faced and steps will be taken to avoid it in the near future.

After the deployment the position of the anchor drop will be noted and two sets of data quality will be verified from the shore station before proceeding to the next deployment action.

TABLE 9.3 DEPLOYMENT SHEET - DATA BUOY

			DATA	BU	ΟΥ			
Location ID								
Position		Latitude				Longitude		
Deployment			Date				Time (IST)	
Station Depth (m))							
Flash Light Chara	acteristics							
CPU Type								
Satellite used (Ple column)	ease tick the approp	oriate	INMARSA	λT	7		INSAT	
Transmitting file	Transmitting file No							
Storage file No								
Vessel Name and Cruise Reference ID								
Cruising period								
			INSTRU	MEN	T FIT			
Sensor	Serial No/make		Sensor		Serial No./make		Sensor	Serial No./make
Air Pressure		Сотр	ass			Cu	rrent Meter	
Humidity/air		SST						
temperature		GPS						
Wind	Battery							
MRU		Modem						
Solar Panel	Solar Panel Antenn							
Field Team Rema	Field Team Remarks							
Shore Station Re	emarks							

Signature

Signature

Signature NIOT Signature Ship –Master

10 RETRIEVAL OPERATION

Fig. 10.1 Retrieval Operation

Retrieval of the Buoy is done by using the Work boat. The hook is fitted in the lifting ring and it is lifted up after the seamen gone away from the buoy. The buoy is taken using ship crane and then the rope is cut using cutting tools. In all activities, preference is given for safety. All persons involving in the deployment and retrieval operations should wear safety helmets, safety boots, coverall, life jacket and hand gloves etc.

After the retrieval of Buoy, a photography is taken for the whole buoy system for further studies and for vandalized components.

The retrieved components are listed and physical damages are noted down in the following table.

TABLE 10.1 RETRIEVAL REPORT- DATA BUOY

Station	Station Buoy ID									
Buoy Ty	ире	Last trans								
Retrieve	d @ Latitude	Retrieved								
Date of	retrieval	Buoy deple								
		· · · ·	*							
Electron	Electronics									
SI No	Itom Description	Serial No. of	Typo	Statue						
51.140	Rein Description	Item	туре	Status						
1.	CPU									
2.	Power box									
3.	Modem									
4.	Antenna									
5.	MRU									
6.	Pressure Sensor									
7.	Air Temperature/Humidity									
8.	SST									
9.	Wind sensor									
10.	Current Meter									
11.	Radar reflector									
12.	Flash light									
13.	Solar panel									
14.	Battery									
15.	Internal cables									
16.	Mast cable									
17.	Solar panel cable									
18.	CM cable									
Mashani										
wechani	cai									
19.	Buoy Hull (WS)									
20.	Cylinder									
21.	Upper mast									
22.	Sensor carrier arm									
23.	Keel weight and frame									
24.	Hood									
Cruise N	0									
Vessel used										
Chief Sc	Chief Scientist									
Team me	embers									
Retrieva	Retrieval team comments/Failure reasons:									

Signature

Signature

Signature NIOT Signature Ship –Master

10.1 Buoy Search Operation – Report

Vessel Name : Date of search : Cruise reference No :

10.1.1 Search Operation Details

Reached buoy deployed location at 14:00 hrs. Buoy not found in location. The weather was good with a surface visibility of 6 nm. A Search was done in Buoy Location till 18: 30 hrs with 5 nm as radius. Buoy was not found during the search operation.

(Chief Scientist)

(Ship-Master)

10.2 Inspection of retrieved buoy

Once the buoy is retrieved, thorough study on the buoy will be done.

10.3 Dismantling of Buoy

After the retrieval of buoy, keel weight and keel frame is to be removed first then followed by mast assembly and hood.

All the electronic components is to be removed and further are taken in the testing room at NIOT.

Before dismantling the buoy assembly, full photograph of the buoy is taken to identify the presence of any evidence of vandalism.

10.3.1 Collecting the vandalized (damaged) components

The damaged parts are separated for Failure Analysis. Photographs are taken immediately for the evidence of failure analysis.

10.3.2 Sending the collected components for Failure Analysis (FA)

The damaged parts are sent to the reputed Failure analysis institution (like CSIR) or organization after returned to NIOT. After analysis a FA report is obtained from the institute.

10.4 Preparing observation report with photos

The condition of the buoy is observed from the photographs. Using the observations, an observation report is prepared and sent immediately to Technical group.

10.4.1 Documenting the Observation and Failure analysis reports

The observation and Failure analysis reports are documented for future reference.

10.4.2 Lesson Learnt (LL) report preparation from the FA report

From the Lessons Learnt report will be prepared for future. It will used to avoid repeated mistakes and modification of design will be done based on the reports.

10.4.3 Retrieved buoy come back to NIOT

The retrieved buoys will be sent to NIOT using trucks.

10.4.4 Making modification in design of buoy using LL report:

Based on the lessons from the observation as well as LL reports, Mechanical team will change the design modification to get more efficient operation.

11 CRUISE REPORT PREPARATION

The cruise report comprises:

- 1. Number of buoy deployment and retrieval operation
- 2. Diary of events
- 3. Location of Deployment and retrieval operation, Depth, time with date
- 4. Lesson learnt from the Deployment and retrieval operation

12 DATA RECEPTION, INTERPRETATION AND QUALITY CONTROL

Data buoys are moored platforms at sea to measure Meteorological and Oceanographic parameters. OOS an operational programme of NIOT has deployed and maintains 12 such data buoys in Indian waters. These buoys measure met ocean parameters at fixed intervals and transmits the same using INMARSAT-C to shore station at synoptic hours. Few are programmed to transmit at one hour interval for specific needs. INMARSAT-C is a satellite based communication system providing worldwide, 2-way, store and forward text communications via TELEX or other data services. The INMARSAT-C space segment consists of four operational communication satellites. Each satellite has a coverage area (also known as the footprint), that corresponds to one of the four ocean regions: Atlantic Ocean East, Atlantic Ocean West, Pacific Ocean and the Indian Ocean.

These four-ocean regions span the majority of the earth's surface, providing worldwide coverage. The success rate of data transmission depends on the Satellite's signal strength and establishment of link lock. The buoy hardware at the time of data transmission establishes a link called as *lock*, with the satellite and starts transmitting the data. The data is then sent to the LES (Land Earth Station), which is a gateway between the INMARSAT-C Satellite system and the national and international fixed communication networks. The LES after necessary accounting, uplinks and delivers the message back to OOS shore station. Indian Data Buoys uses IOR (Indian Ocean Region) satellite for data transmission and SINGTEL-Singapore as the LES.

As challenges arise in the form of natural disasters, OOS has been identified to deploy buoys capable of identifying Tsunami's as part of Tsunami Early Warning System in India. Data from Tsunami buoys are sent to OOS and INCOIS.

Real-time data ingest happens at shore station via Inmarsat satellite system for data and OMNI buoys and thru mail communication for Tsunami Buoys. All decoded data are stored in a master database and on individual log files.

12.1 Procedure

Manual Data Quality Control should be carried out in two steps. Initial manual quality check to be done by SSAMC (Watch Standers) team and their findings to be notified to SSMT (Data Analyst) team before or by 12:30 hrs IST every day. The findings should be vetted by SSMT (Data Analyst) team before or by 16:30 hrs IST every day. The manual data quality control exercise should be completed by 17:30 hrs IST every day with necessary flags and archival done. However, SSAMC team, since they support 24x7 they will continue to do the initial data quality check during weekends and their findings will be vetted by SSMT(Data Analyst) the following Monday before or by 12:30 hrs IST.

12.2 Manual QC

- 1.1 All buoy / platform position to be checked. If any drift sensed on one or more buoys / platforms, drift path to be plotted and should be notified to SSMT team & Group head by means of E-mail along with the plotted graph, information on total drift and drift from the previous transmission. From the first day of the drift, graphs to be plotted and reviewed daily.
- **1.2** If the buoy / platform have drifted **6nm** out of its deployed location then release of data for that location should be flagged with comment (Buoy Off location) and a note to INCOIS and CG on buoy drift to be sent.
- **1.3** Master file has to be updated with necessary flags and the data to be excluded from the quality controlled database.
- **1.4** Request for retrieval of drifting buoy to be initiated to the Field Support Team to plan for retrieval operation and cruise.
- **1.5** If the buoy happens to be an OMNI Buoy visually inspect the under water pressure sensor data for abrupt decreases corresponding to buoy movement.

12.3 Transmission Fails

In situations where transmissions fails or a dead buoy begins transmitting again, the following steps should be taken.

- 1.1 When buoy fails enter the failure should be entered in daily LOG. e
- **1.2** Change the Transmission Flag in the DB to Transmission Outage.
- **1.3** The date is the date of the failure, and makes a comment explaining the failure. Copy this information down to all the sensors.
- **1.4** If vandalism suspected mention it in the log book

12.4 Manual Quality Control

Key to perform QC on Met Ocean parameters.

Measurement	Preliminary gross automated error checking	Sensor measurements that will generate automated error alerts	Additional daily checks
Wind direction		Hourly and daily compass or vane zero; daily compass or vane constant; daily direction varies more than 40° per 3 hour interval.	Visual inspection of last ten days against available model data
Wind velocity		Daily speed changes more than 7 m/s from previous 6 observations	Visual inspection of last ten days against available model data
Relative humidity (RH)	RH set to missing if > 99.9%	Daily RH outside 65-99%; hourly RH outside 50-100% within past two weeks; changes >20% from previous observation 30% in 3hr	Compare hourly and daily RH against hourly and daily air temperature to ensure an invalid air temperature measurement did not cause the anomaly
Air temperature (AT)	AT set to missing if > 40° or < 15°	Daily AT changes > 5 °C from previous day; daily AT - SST > 1.4 °C;daily AT outside 6 - 32 °C; hourly AT outside 15 - 33 °C within past two weeks 4 ° per 3hr	Visually inspect hourly air temperature for > 2° changes from previous hour
Sea surface temperature (SST)	e SST set to missing if > 6° or < 20° Daily SST changes > 5°C from previous day; daily SST - T at 20m or 25m > 0.2°; hourly SST outside 20 - 30°C within past two weeks		1.5 ℃ per hr 3 ℃ per hr Visual inspection of the last two weeks time series plot of SST vs. wind vectors
Subsurface temperature (T)	Daily T set to missing if > 40.0° or < - 2.0°.	Daily T changes > 5 °C from previous day; vertical gradient between adjacent sensors checked. Daily T conforms to the reference values for the current average (± 3 standard deviations of 90-day mean)	2°C per 3hr 1°C per hr above 100m depth , 0.5°C per hr 100m and below Visual inspection of T profiles
Rainfall	Rate > 500 mm/hr Sensor output full scale; daily rainfall rate outside -0.1-10 mm/hr daily rain rate > 1.0 mm/hr for < 5% time raining; daily rain rate < 0.1 mm/hr for > 25% time raining		250mm/hr ,Visually inspect last ten days percent time raining for invalid measurement trends

Measurement	Preliminary gross automated error checking	Sensor measurements that will generate automated error alerts	Additional daily checks
Barometric pressure (BP)	900-1080 mb	BP changes > 5 millibars from previous 3hr ; daily BP outside 990- 1018 millibars; hourly barometric pressure outside 990-1018 millibars in past two weeks	5mb/3hr, Visual inspection and comparison with neighboring sites.
Salinity	Computed only for conductivity in range 30.0-70.0 milli Siemans per centimeter (mS/cm) and T > 0.0° 20-45 psu	Salinity changes by > 0.5 psu; salinity outside 31.0 - 36.5 psu; density inversions computed from daily averaged salinities and temperatures > 0.05 kg/m3; salinity does not conform to the reference values for the current average (> ± 3 standard deviations of 90-day mean)	25-35 psu for BoB and 30-40 psu for AS, Visually inspect last ten days of salinity for erratic trends

12.5 Escalation and Notification

SSAMC watch standers (people who are in shift) shall notify the appropriate POC as per E&N in the event of Tsunami - primarily in IOR, Earth Quake - primarily in IOR, whenever a station fails, station drifts, erratic sensor reading, drift in sensor reading, communication issues, transmission failures and any unusual events as per following guideline.

SI. No.	Event	Time & Criteria	Notification by
1	Tsunami in IOR	As soon as alert noted / Notification received.	Phone / SMS / E-mail / Fax
2	Earth Quake in IOR	As soon as alert noted / Notification received.	Phone / SMS / E-mail
3	Station(s) Failure	If not resumed after two consecutive transmissions	E-mail / SMS
4	Drift in Sensor(s) Reading	After confirmation from Data Analyst	E-mail
5	Erratic Sensor Reading	After two consecutive transmissions and confirmation from Data Analyst	E-mail
6	Station Drift	As soon as drift confirmed after two consecutive transmissions	E-mail / Fax
7	Communication Issues	As soon as noted and after resumption.	E-mail / SMS
8	Station(s) Drift	As soon as drift confirmed after two consecutive transmissions	E-mail / Fax
9	Transmission Failure	As soon as noted and after resumption.	Email / SMS
10	Unusual Event(s)	As soon as an unusual event noticed and depending upon the criticality.	Phone / E-Mail / SMS

12.5.1 E-MAIL Sample

FROM: "ssamc" <ssamc@niot.res.in> TO: SENTOSA SHIFT<gsses@singtel.com>or<<u>BT.ROKADE@tatacommunications.com</u>> CC: <u>venkat@niot.res.in</u>, <u>sundar@niot.res.in</u>, <u>arul@niot.res.in</u>, <u>rsundar@niot.res.in</u>,

Subject: No Data transmission from Modem No: <XXXXXXXX>

This is to inform that we have not received data from Modem No. <XXXXXXXX > for the last **hh** hours or XX GMT, XX GMT (specific GMT). Please check your communication link, servers, software, etc. and report us the results back to <u>ssamc@niot.res.in</u> with reply all option.

Thanks,

With Kind Regards,

<Watch Stander Name>

Date: Time:

12.5.2 Follow-Up E-MAIL sample

If **no reply** received from LES **within 30 minutes** in case of **Tsunami** Buoy(s) and **3 hours** in case of **Met** or **Omni** Buoy then the follow-up email to be sent to respective LES along with their **escalation contacts** in CC. **Note**: Old mail should be forwarded along with the follow-up mail.

FROM: "ssamc" <ssamc@niot.res.in> TO: SENTOSA SHIFT<gsses@singtel.com>or<<u>BT.ROKADE@tatacommunications.com</u>> CC: <u>escalated-contact@singtel.com</u>, <u>escalated-contact@tatacommunication.com</u>, <u>venkat@niot.res.in</u>, <u>sundar@niot.res.in</u>, <u>arul@niot.res.in</u>,

Subject: Reminder-1 -No Data transmission from Modem No: <XXXXXXXX>

Please refer to our earlier communication (forwarded herewith) on the non receipt of data from Modem(s) No. <XXXXXXX > for the last **hh** hours or XX GMT, XX GMT (specific GMT). Please act immediately by verifying your communication link, servers, software, etc. and report us the results back to <u>ssamc@niot.res.in</u> with reply all option.

Thanks,

With Kind Regards,
<Watch Stander Name>

Date: Time:

<Forwarded Mail>-----

FROM: "ssamc" <ssamc@niot.res.in> TO: SENTOSA SHIFT<gses@singtel.com>or<<u>BT.ROKADE@tatacommunications.com</u>> CC: <u>venkat@niot.res.in</u>, <u>sundar@niot.res.in</u>, <u>arul@niot.res.in</u>, <u>rsundar@niot.res.in</u>,

Subject: No Data transmission from Modem No: <XXXXXXXX>

This is to inform that we have not received data from Modem No. <XXXXXXXX > for the last **hh** hours or XX GMT, XX GMT (specific GMT). Please check your communication link, servers, software, etc. and report us the results back to <u>ssamc@niot.res.in</u> with reply all option.

12.5.3 Escalated E-MAIL sample

Even after sending a follow-up reminder, if **no reply** received from LES **within 30 minutes** in case of **Tsunami** Buoy(s) and **1 hour** in case of **Met** or **Omni** Buoy then an **escalation phone call** and an email to be sent to respective LES's escalated contacts along with LES next level **escalation contacts** in CC.

FROM: "ssamc" <ssamc@niot.res.in>

TO: escalated-contact@singtel.com, escalated-contact@tatacommunication.com CC: SENTOSA SHIFT<gsses@singtel.com>or<<u>BT.ROKADE@tatacommunications.com</u>>, venkat@niot.res.in, <u>sundar@niot.res.in</u>, arul@niot.res.in, Next level escalated-contact@singtel.com, Next level escalated-contact@tatacommunication.com

Subject: No response to our request from Singtel or Tata Communications - reg.

Please refer to our earlier communications on the non receipt of data from modem(s). We have not received any response from your end till now. Please be aware that the data communicated through the modem(s) have high visibility, sensitivity and of national importance. Any delay in obtaining the data leads to severe impact and hence request you to direct your team to act on this quickly.

Thanks,

With Kind Regards, </br><Watch Stander Name>

Date: Time:

12.5.4 FAX sample

The content of the mail shall be used as per standard FAX template

OCEAN OBSERVATION SYSTEMS

NATIONAL INSTITUTE OF OCEAN TECHNOLOGY

		Ministry of Earth So Tambaram – Velach	ciences, Government of India hery Main Road , Pallikaranai Chennai – 600 100, INDIA		
Pages including cover sheet [] Urgent []	Please Reply []	.44-22460661		
		F/NIOT/OOS/ <re< td=""><td>ecipient-reference>-CORRES Month, dd,yyyy</td></re<>	ecipient-reference>-CORRES Month, dd,yyyy		
FAX MESSAGE					

Request re-fax by calling : 91-44-22462944 / 66783536 / 666783537 / 22460678

12.5.5 Frequency & Logging of Events

Daily an entry on a Watch Log, day wise and event wise to be recorded. In addition to verifying the quality of meteorological and oceanographic data received from stations, this procedure mandates that power checks also to be performed on all buoys / platforms daily and transmission wise.

12.6 Meta Data Sheet

ODAS	Description (number/alphanum	neric)	Core/	In ODAS	Notes
abbrev	detelle		option	format	
Station		(12)	0	Vee	-
	ODAS ID	(n)	0	Yes	-
WMOn	WMO number	(n)	C	Yes	-
stn	Station name	(a)	0	Yes	RP02
ts	Type of station	(a)	C	Yes	Moored buoy
stat	Status	(a)	C	No	Operational
ind	Start date	(a)	0	Yes	20/03/2011
oed	End date	(a)	0	Yes	-
pdepl	Period of deployment	(a)	0	No	All year
cnty	Country of ownership	(a)	С	Yes	INDIA
ragy	Operating agency/institute	(a)	С	Yes	NIOT
					=1 for
DA	Degree of automation	(n)	0	Yes	moored buoy
Lat	Latitude (of deployment)	(n)	С	Yes	10.8819
Lon	Longitude (of deployment)	(n)	С	Yes	72.2187
WC	Watch circle (n	(n)	0	Yes	30m
Hult	Hull type	(a)	С	Yes	Discus
					Furgo
HulMS	Hull manufacturer/model	(a)	0	No	OCEANOR
HulMat	Hull material	(a)	0	ves	Plastic
Ingth	Length (m)	(n)	0	Yes	-
	Breadth/width				
Brth	(m)	(n)	0	Yes	-
Diam	Diameter (m)	(n)	0	Yes	2.85 m
		()	-		S-Shape
Mtvp	Mooring type	(a)	0	Yes	Mooring
-71-	Operating	(/	_		y
openv	environment (a) ()	No	Open ocean	
	Water depth	-, -			
wdpth	(m)	(n)	0	Yes	20m
elev	Elevation above sea level (m)	(n)	0	No	-
		()	-		Include Geni
Cmsv	Primary data collection system	(a)	0	Yes	with Inmarsat
Stt	Primary (satellite) transmission	(/	0	Yes	One Hour
•	time	(a)	•		
	Primary sat	(/			
Stno	transmission ID (n) ()	No	2018	
	data collection	/ -	-		As
Cmsv2	Secondary system	(a)	0	No	appropriate
	(satellite)	X-9			
Stt2	Secondary transmission		0	No	
	time	(a)			
Stno2	Secondary sat transmission II	(<u>⊶</u>) D (n)	0	No	
002	Observation	- (…)			
Foo	frequency (hrs) (n)	С	Yes	One Hour	

ODAS abbrev	Description	(number/alphanumeric)	Core/ option	In ODAS format	Notes
Aln	Any other	ID (a	0	Yes	-
				Internal storage and GTS data available	
davail	Data availability	(a) C	No	in internet	
dfmt	Data format	(a) C	Yes	Netcdf	
	Type & version				
belec	of internal buoy	0	No	FOAS Geni3	
	processor	(a)		
WebA	Web address	(a) O	Yes	www.niot.res.in	

ODAS	Description (number/alphanume	eric)	Core/	In ODAS	Notes
abbrev			option	format	
Anemor	netry (if installed)				
nanemo	Number of systems	(n)	0	No	2
	Primary anemometer				
anml	type	(a)	С	Yes	Cup anemometer
	Primary anemometer				Lambrecht 1453 S2
aMS	model	(a)	С	Yes	F1000
					If a sonic
cdim	No. of axos	(n)	\circ	No	anemometer (2 or
Suim	Primary wind direction	(11)	0	INU	Jambrecht 1453 S2
cmpT	sensor model	(a)	С	Yes	F1000
<u> </u>	Measurement height	(~)			
hwl	(m asl)	(n)	С	Yes	+3m
	Wind speed sampling				
sfWS	freq (Hz)	(n)	0	Yes	1 Hz
	Wind direction			N/	4.11-
stWD	sampling freq (Hz)	(n)	0	Yes	1 HZ
anWS	wind speed averaging	(n)	C	Voc	10 mine
apwo apWD	Wind direction averaging period (min)(n)	(11)	0	Voc	10 mins
ctilt	Corrected for buoy tilt	(a)	0	No	no
oun	Averaging method for	(u)	Ŭ		110
amWS	wind speed	(a)	0	Yes	Scalar (s)
aust	Gust length (s)	(n)	0	No	3s
	Secondary				
anml2	anemometer type	(a)	С	No	Cup anemometer
	Secondary				Lambrecht 1453 S2
aMS2	anemometer model	(a)	0	No	F1000
	No of axes (if a		<u> </u>		If a sonic
saim2	sonic)	(n)	0	INO	anemometer (2 or 3)
			~	N I.a	
cmp12	Secondary who direction sensor model(a)		0	INO	F1000
hwl2	(m asl)	(n)	0	No	+3m
	Wind speed sampling	()	Ū		
sfWS2	freq (Hz)	(n)	0	No	1 Hz
	Wind direction				
sfWD2	sampling freq (Hz)	(n)	0	No	1 Hz
	Wind speed averaging	()	0	N	10
apws2	Wind direction evencing partial (mic)(a)	(n)	0	NO No	10 mins
apvvD2	vind direction averaging period (min)(n)	(-)	0	INO No	iu mins
ctilt2	Corrected for buoy tilt	(a)	0	INO	по
am\\/C0	Averaging method for wind speed	(\mathbf{a})		No	Scalar (s)
annvosz	wind speed	(a)	0	INU	Scalal (S)

gust2	Gust length (s)	(n) O	No	3s

ODAS	Description (number/alphanumeric)	Core/	In ODAS	Notes
abbrev		option	format	
Air tem	perature (if installed)	-		-
nats	Number of systems	0	No	2
ats	Primary instrument type	С	Yes	Pt-100 RTD
atsMS	Primary sensor model	С	Yes	Rotornic MP101A
atswl	Measurement height	С	Yes	+3m
apaT	Averaging period (mins)	С	Yes	1 mins
ats2	Secondary instrument type	0	No	Pt-100 RTD
atsMS2	Secondary sensor model	0	No	Rotornic MP101A
atswl2	Measurement height	0	No	+3m
apaT2	Averaging period (mins)	0	No	1 mins
Sea sur	face temperature (if installed)			
nwts	Number of systems	0	No	2
wts	Primary instrument type	С	Yes	sontek
wtsMS	Primary sensor model	С	Yes	Argonet-MD
dws	Measurement depth	С	Yes	2m
apWT	Averaging period (mins)	С	Yes	2mins
wts2	Secondary instrument type	0	No	MicroCAT-CT
wtsMS2	Secondary sensor model	0	No	YSI Sonde 6600
dws2	Measurement depth	0	No	1m
apWT2	Averaging period (mins)	0	No	10 sec
Sea sur	face salinity (if installed)			
nSs	Number of systems	0	No	1
Sstp	Primary instrument type	С	Yes	MicroCAT-CT
Ssm	Primary sensor model	С	Yes	YSI Sonde 6600
dss	Measurement depth	С	Yes	1m
apSs	Averaging period (mins)	С	Yes	10 sec
Sstp2	Secondary instrument type	0	No	
Ssm2	Secondary sensor model	0	No	
dss2	Measurement depth	0	No	
apSs2	Averaging period (mins)	0	No	

ANNEXURE – A

Part.No	NAME OF THE COMPONENTS	Quantity per buoy
1.0	FRP COMPONENTS	
001	Hull	2 half (1 set)
061	FRP Battery Box	1 No.
002	FRP protective hood	1 No.
2.0	ALUMINIUM COMPONENTS	
	Central Cylinder	
005	Aluminium Central Cylinder	1 No
006	Cylinder lid	1 No
007	Instrument plate	1 No
	Mast Assembly	
012	Lower mast	1 No
011	Upper mast	1 No
013	Sensor arm	1 No
004	Hood rod, nut & washer	
	Aluminium Accessories	
042	Antenna Flange(2 parts)	1 No each
038	Air inlet on Sensor Arm	1 No
047	Compass Clamp	1 No
059-060	Cable Gripper(2 sizes)	1 No each
087	Fender plate washer	1 No
043	Radar reflector	1 set
	STAINLESS STEEL COMPONENTS	
	Stainless Steel Accessories	
017	Lifting ring	1 No
018	Lifting lug	2 Nos
019	Fin lug	1 No
020	Mooring lug	1 No
021	Tension steel band- long,	2 half (1 set)
022	Tension steel band-medium	4 half (2 sets)
004	Long bolt	2 Nos
023	Lid hinge plate with hinge	1 No on each
024	Battery press rod	2 Nos
048	Antenna cable adaptor	1 No
068	Mast cable adaptor	1 No
038	Air inlet on lid	1 No
099	Lid lock keys	16 Nos
041	Vent pipe	2 Nos
053	Current meter frame	1 No
044	Nitrogen plug	2 Nos
074	Fasteners	
071	Sensor arm: M8X40 Allen head bolt with one self lock hut	4 NOS.
074	Mast: M12x50 Allon boad bolt with one solf lock put and	4 Noc
074	two washers	4 1105.
077	Clamping rings: M16 x 160 Hexagonal head bolt with one	4 Nos
011	self lock nut and two washers	+ N03.
	Small clamping rings: M10 x 80 Hexagonal head bolt with	4 Nos.
001	Une self lock nut and two wasners	0 Noo
180	Linding Things: WITO X 50 Hexagonal head bolt with one self	O INUS.
000	Kool woight: M16 x 76 Hovershall head halt with and self.	16 Noc
003	lock put and two washers	TO NUS.
001	General Purpose: M6 x 20 Hovagonal cooket head can belt	20 Nos
031	I General i dipose, no x zo nexagonal sourcet nead cap bolt	201103.

Part.No	NAME OF THE COMPONENTS	Quantity per buoy
	with one self lock nut and two washers	
085	Anode: M6 x 8 Allen head bolt with one self lock nut and two washers	16 Nos.
086	Fender: M10 self lock nut and two washers	6 set
090	Sensors: M5 x 20 Allen bolt with one self lock nut and two washers	4 Nos.
	Anode: M6 flower washer	16 Nos.
098	<i>Lid bolt:</i> M10 x 35 Hexagonal socket head cap special bolt with a center pin	16 Nos.
101	Lifting lug: M20 check nut and lock nut	2 Nos on each
091	M6*20 for humidity sensor (Allen or hexagonal screw, SL nut and washer)	2 Nos.
090	M5*20 for Beacon lamp(Allen or hexagonal screw ,SL nut and washer)	3 Nos.
093	M4*12 for antenna and flange fixing(Allen or hexagonal screw ,SL nut and washer)	3 Nos.
092	M6*25 for antenna flange with sensor arm fixing (Allen or hexagonal screw ,SL nut and washer)	3 Nos.
090	M5*20 for wind sensor fixing (Allen screw, SL nut and washer)	5 Nos.
091	M6*20 for air inlet fixing in sensor arm (Allen screw, SL nut and washer)	4 Nos.
095	M6*10 for pressure sensor (Allen screw only with washer)	4 Nos.
	M4*15for MRU&MRU holder fixing (Allen screw and washer)	4 Nos.
	M6*50 for CT sensor frame (Allen screw, SL nut and washer)	4 Nos.
092	M6*25 for MRU holder and Instrument plate fixing (Allen screw only with washer)	4 Nos.
	M8*70,M6*50 for surface modem	4 Nos each
	clamp(Allen screw ,SL nut and washer)	
	M6"40 for surface modern clamp(Allen	
		6 NOS
027	Fonder	2 half (1 cot)
037		2 nali (1 set)
028	Air Inlet	1 No
036		6 Nos
039	Mast cable adaptor	2 Nos
000	Nitrogen plug	2 Nos
	Vent pipe	2 Nos
	Antenna cable adaptor	1 No
	Central Cylinder	
	MILD STEEL COMPONENTS	
014	Keel Weight	1 No
015	Keel Frame	1 No
052	Conductivity & Temperature Sensor Frame	1 No
142	GI Pipe	1 No
	Surface modem clamp (two parts)	1 No on each
0.17	OTHER COMPONENTS	
045	Vent valve with spacer	2 Nos on each
051	vvater trap	I INO
860	Air Iniel LUDE (2 SIZES)	3m on each
003		TO NUS
016	PVC Flance	1 No
010		

Part.No	NAME OF THE COMPONENTS	Quantity per buoy
036	Bush for band	12 Nos
036	Bush for Central Cylinder & Keel Frame	8 Nos
040	Anti rotation fin	1 No
048	Gland for Antenna Cable Adaptor	1 No
050	MRU Holder	1 No
056	Battery box hose(2.5 m length)	2 Nos
	Elbow type pneumatic connector	3 Nos
	Double flange(separable) bush for lifting ring hole	16 Nos

ANNEXURE - B WORK FLOW CHART FOR NEW DATA BUOY TESTING

ANNEXURE – C

DEPLOYMENT PROCEDURE

S NO	DESCRIPTION	REMA	RKS	COMMENTS
3.110	DESCRIPTION	YES	NO	COMMENTS
DEPL	OYMENT OPERATION			
1	Conduct the bathymetry survey around 1 nm radially from the proposed anchor deployment location with the help of Multi-Beam Echo Sounder (MBES).			
2	Prepare the required length of mooring ropes based on the depth of the location			
3	Watch Circle Radius (WCR) of the buoy is calculated after determining the mooring rope length.			
4	Connect 1m Galvanized iron (GI) chain at the connecting point of keel frame (KF).			
5	Place the combination rope coil on the spool stand.			
6	Lay down Nylon rope on the deck, for easy operation and cut down the required length of the polypropylene rope from the coil.			
7	Connect the chain and combination rope by 3/4" GI shackle.			
8	By using the ship crane lower the Buoy slowly, up to the sea water surface with the help of sling and quick release.			
9	Start paying out of combination rope. At the end of combination rope connect the nylon rope with the help of ³ / ₄ " shackle and start paying out of nylon rope.			
10	Connect the mooring hardwares in order with suitable Minimum breaking load(MBL),Proof Load(PL) and Safe Working Load(SWL) as per the instructions given below and mooring diagram given in annexure			
11	Six numbers of subsurface floats are attached at the end of the nylon rope. Connect the Polypropylene (PP) rope with nylon rope end.			
12	Then start paying out of PP rope. During the payout of PP rope, dead weight and anchor is connected with 3m GI chain. One more 3m chain is connected to the dead weight.			
13	PP rope end is connected to the 3m chain which is connected to the deadweight with the aid of ³ / ₄ " shackles.			
14	At last, the dead weight and sinker weight are dropped at the anchor dropping location.			
15	In case of Tsunami Buoy, the ship is moved to 300m away from the anchor drop location. BPR is assembled with BPR float. A shackle is tied with the BPR deadweight and it is connected to the BPR by 1m Nylon rope.			
16	BPR battery voltage is to be checked. It should be replaced if it has less voltage.			

ANNEXURE – D

WORK FLOW CHART FOR RETRIEVED BUOY

ANNEXURE - E

BUOY RETRIEVAL OPERATION

S NO	S.NO DESCRIPTION	REMARKS		COMMENTS
3.110		YES	NO	
BUOY	RETRIEVAL OPERATION			
1	Retrieval of the Buoy is done by using the Work boat with On-Board Motor (OBM). A rope with hook is fitted in the lifting ring /lifting lug and the other end of the rope is given to the ship. The rope is attached to the capstan. By using the capstan, the buoy is dragged near to the ship.			
2	The ship crane hook is attached to the lifting ring and it is lifted up after the seamen gone away from the buoy.			
3	In all activities, preference is given for safety. All persons involving in the deployment and retrieval operations should wear safety helmets, safety boots, coverall, life jacket and hand gloves etc.			
4	The guiding ropes are attached at combination rope and the other end of the guiding ropes is attached to the guiding provisions given in the ship.			
5	The tension in the rope is reduced by lowering the crane. Then the shackle at the end of the chain in the mooring is disconnected and then the remaining rope will be allowed to go down to the sea.			
6	After retrieval of the buoy, thorough study on the buoy will be done. The damaged parts are separated for Failure Analysis. Photographs are taken immediately for the evidence of failure and Vandalized parts.			

ANNEXURE - F

BPR RETRIEVAL OPERATION

S NO	DESCRIPTION	REMARKS	COMMENTS	
5.10	DESCRIPTION	YES	NO	COMMENTS
BPR RETF	REVAL OPERATION			
1	At first, the ship is moved to the BPR deployed location. By using dunker modem, the slope value is taken between the BPR and dunker modem. If the communication between the BPR and dunker modem is done, then position of dunker modem deployment location is changed. When the slope is very less among various slope values taken, then at the moment the BPR is released by the release command.			
2	BPR search operation is done with the help of triangulation method by making BPR deployed location as center and 500m as side of the triangle.			

ANNEXURE – G

CALCULATION OF WATCH CIRCLE RADIUS

Sample Watch Circle Radius Calculation (WCR):

For instance, if a buoy is deployed to a depth of 4000 m, the following length of mooring ropes are essential to calculate the WCR of Data buoy and BPR

1.	Combination rope	= 550m
2.	Nylon rope	= 160m
3.	Polypropylene rope	= (4000-550)
		= 3450m

3m chain is being used for fixing sinker weight at the Polypropylene rope end and hence it has to be taken for calculation.

Calculation of Buoy Watch Circle Radius

Buoy's Depth	=	4000m
Mooring length when calm weather + 3m chain	=	4003m
Maximum mooring length	=	(550+160+3450+3)
	=	4163

Therefore, Buoy watch circle Radius =1124.01m.

Also, BPR is deployed 500m far from the buoy anchor position.

Calculation of BPR Watch Circle Radius

Depth at the place	= 400)0m
Hal-beam angle for the BPR	= 30 ⁰	
R2		
30 ⁰ 4000m		
TanΦ	=	(R2)/4000
Tan30 ⁰	=	(R2)/4000
R2	=	.58*4000
	=	2320m
BPR watch circle Radius	=	2320m.

CONCLUSION:

From the above calculation, it is observed that		
Buoy watch circle radius	=	1124.01m
Distance between the BPR and Buoy anchor position	=	500m
BPR watch circle radius	=	2320m

The above details have plotted in AutoCAD and it is concluded that the Buoy watch circle lies within the BPR watch circle. Hence, there will be good communication between the surface modem and the BPR. After getting confirmation, BPR is lowered at the desired location.

ANNEXURE - H

PLACEMENTS OF ZINC ANODE IN THE BUOY

SI.No	Description	Quantity	Weight (g)	Remarks
1	Bottom of Central cylinder	4	500	
2	Circumference of keel weight	8	500	
3	Side of Fin lug	1	200	
4	Side of mooring lug	1	200	

ANNEXURE – I

CHECK LIST FOR RETRIEVED BUOY SERVICE

S.NO	DESCRIPTION	REMARKS
1	Flotation body outer skin cleaned and marine growth removed by high- pressure washer and coat with antifouling SEAALU – Jotun.	
2	Mast flange inspected for damage, cracks: loose or missing bolts, nuts and washer on mast sections, Missing Bolts etc. replaced.	
3	Mast surface inspected for corrosion: Corroded/ scratch areas must be cleaned and repainted.	
4	Central cylinder lid connectors inspected for damage, bends or evidence of corrosion.	
5	O – ring inspected and the O – ring groove inspected for evidence of corrosion and O- ring replaced if necessary.	
6	Apply silicone to O-ring.	
7	Lid clamp bolts and lid clamps inspected	
8	Apply grease (NOVA LUBE) to lid clamp bolts if necessary.	
9	Bottom part of cylinder area (outside) cleaned and repainted with antifouling SEAALU – Jotun.	
10	Keel flanges and keel weight inspected for damage, cracks, loose or missing bolts, nuts and washers. Missing bolts etc. replaced.	
11	Zinc Anodes inspected for heavy corrosion and replaced if necessary	
12	Mooring cleaned for marine growth:	
13	Chain, shackle, rope, wire and thimbles were inspected for sign of corrosion and replaced if necessary.	
14	Taken care when handling a buoy after months of operation. Flush the buoy with N2 gas (or air) immediately after lifting it up from the seawater.	

ANNEXURE : J

MOORING ROPES DETAILS

:	18 mm
:	9 tons
	1//0 N/ mm ⁻ .
:	per IS 1835/Equivalent
:	Medium duty marine application
:	6 x 19 + IWRC
:	Each strand of the rope except IWRC shall be sheathed with polypropylene.
:	Right hand Ordinary Lay
e :	16 mm
:	5.5 tons
:	Around 1.14
:	260°C.
:	320m per spool
:	max 4%
:	21%
:	12 strands (2x6)
e :	18 mm
:	5.5 tons
:	0.99
:	260°C
:	1%
:	12-14%
:	6 x 12
	e : : : : : : : : : : : : : : : : : : :

Mooring Hardwares details:

Part.No	Description	Material	Size	SWL (Tons)
		Alloy steel-Bow type	3⁄4"	4.75
		Alloy steel-Bow type	5/8"	4.5
171 - 173	Shackle	Stainless steel-D type	5/8"	3.25
		Stainless steel –D type	3/8"	1
		Stainless steel- D type	5/16"	0.75
175	Chain	Alloysteel	1"	8.5
177	Bearing swivel	Alloysteel	-	5
178	Mechanical swivel	Alloysteel	1"	8.5
180	Thimble	steel	Based on rope size	8.5
	Master link	Alloysteel	1"	8.5

ANNEXURE – K

ZINC ANODE WEIGHT CALCULATION

FORMULA USED

PROTECTIVE CURRENT: 1.

 $I_G = A_G \times i_S$

Where,

 I_G – Total Protective Current in Amperes (A) A_G – Total Area to be protected in meters. i_S – Protective Current Density in A/m²

2. ANODE WEIGHT:

$$m_{\rm G} = \frac{l_{G \times t_S}}{Q_g}$$

Where,

 $m_{\rm G}$ - Required Anode Weight in grams (g) $I_{\rm G}$ - Total protective current in Amperes (A)

 $t_{\rm S}$ - Protective period in Hours.

Qg - Electrochemical efficiency of the anode alloy in A h/g

CONSTANTS USED:

Protective current density	$(I_s) = 20 \text{ mA/ m}^2$
Electrochemical efficiency of the anode alloy	$(\dot{Q}_{g}) = 780 \text{A h} / \text{Kg} = 780 \times 1000 \text{ A h} / \text{g}.$

CALCULATION

1. SURFACE AREA CALCULATION FOR CYLINDER LID:

Surface area of the lid		$=\frac{\pi}{4} \times 745^2 = 435915.62 \text{ mm}^2$	
Area of the M8 Holes for lid hinge and handle fixing		$(s) = 6 \times \frac{\pi}{4} \times 8^2 = 301.59 \text{ mm}^2$	
Area of the Φ 26 Holes	for vent pipe fixing (2 Nos)	$= 2 \times \frac{\pi}{4} \times 26^2 = 1061.86 \text{ mm}^2$	
Area of the Slots for lid	$= 16 \times \frac{\pi}{2} \times 25^2 = 3926.99 \text{ mm}^2$		
(semi circle)			
Area of the Handle and spacer = 310 =		$10 \times 20 = 6200 \text{ mm}^2$	
Area of the Spacer	$=\frac{\pi}{4}$	< (18 ² - 12 ²) = 141.37 mm ²	
Total Area (A _G)	= (Surface area of the lid - Area of the M8 Holes - Area of the Φ 26 Holes - Area of the Slots + Area of the Handle and spacer)		
	= 435915.62 - 301.59 - 1061.86	5 - 3926.99 + 6200 + 141.37 10 ⁻⁶ m ²	
	$= 430023.10$ mm $= 430900.00 \times$		

2. **PROTECTIVE CURRENT** (I_G):

$$I_{G} = A_{G} \times i_{S}$$

= 436966.55 × 10⁻⁶ × 20 × 10⁻³
= 8.74 × 10⁻³ A
NODE WEIGHT (m_c)

$$m_{G} = \frac{I_{G \times t_{S}}}{Q_{g}}$$
$$= \frac{8.74 \times 10^{-9} \times 8760}{780 \times 1000}$$
$$= 0.0982 \text{ Kg} \sim 100 \text{ g}.$$

REFERENCE:

- 1. Oceanor Wave Scan Buoy User Manual
- 2. http://www.ndbc.noaa.gov/
- 3. Surface Buoy Moored system Document, NIOT-OOS.
- 4. www.gl-group.com/infoservices/rules/pdfs/english/ergvors/teil-10/kap-2/englisch/abschn07.pdf
- 5. http://www.pmel.noaa.gov/tao/

Note:

The supporting Documents and References regarding Assembly, testing, deployment and retrieval of Data/ Tsunami Buoys and technical documents are available in the system (192.168.77.154) OOS/P.MURUGESH/ New Volume (F)/PROCESSES/D&M.

GLOSSARY:

Accuracy

Degree of conformity of a measure to a standard or true value; in other words, how close a predicted or measured value is to the true value.

ADCP

Acoustic Doppler Current Profiler

Altimeter

An instrument that indicates the altitude of an object above a fixed level. Pressure altimeters use an aneroid barometer with a scale graduated in altitude instead of pressure.

Analog

1. Class of measuring devices in which the output varies continuously as a function of the input (non-digital).

2. A historical instance of a given meteorological scenario or feature that is used for comparison with another scenario or feature. For example, a long-range forecaster predicting conditions for the upcoming winter may make comparisons to analog seasons in which meteorological factors were similar to those of the upcoming season.

Analog Signal

A signal, such as voice, that varies in a continuous manner

Anemometer

An instrument used for measuring the speed of the wind.

Apparent Temperature

A measure of human discomfort due to combined heat and humidity (e.g., heat index).

Apparent Wind

The speed and true direction from which the wind appears to blow with reference to a moving point. Sometimes called RELATIVE WIND.

Azimuth

A direction in terms of a 360° compass. North is at 0°, east is at 90°, south is at 180°, and west is at 270° $\,$

Azimuth Angle

The direction or bearing toward which a sloping surface faces (e.g., a north-facing slope has an azimuth angle of 360° ; a northeast-facing slope, an azimuth angle of 45°).

Bandwidth

The frequency range between the lowest and highest frequencies that are passed through a component, circuit, or system with acceptable attenuation.

Barometer

An instrument that measures atmospheric pressure.

Barometric Pressure

The pressure of the atmosphere as indicated by a barometer.

Bathymetry

The science of measuring depths of the oceans, lakes, seas, etc.

Buoyancy

The tendency of a body to float or to rise when submerged in a fluid; the power of a fluid to exert an upward force on a body placed in it.

Dew Point

(Abbrev. DWPT) - A measure of atmospheric moisture. It is the temperature to which air must be cooled in order to reach saturation (assuming air pressure and moisture content are constant). A higher dew point indicates more moisture present in the air. It is sometimes referred to as Dew Point Temperature, and sometimes written as one word (Dewpoint).

Calibration

In hydrologic terms, the process of using historical data to estimate parameters in a hydrologic forecast technique such as SACSMA, routings, and unit hydrographs.

Calm

A weather condition when no air motion (wind) is detected.

Capillary Waves

Waves caused by the initial wind stress on the water surface causes what are known as capillary waves. These have a wavelength of less than 1.73 cm, and the force that tries to restore them to equilibrium is the cohesion of the individual molecules. Capillary waves are important in starting the process of energy transfer from the air to the water.

Carbon Dioxide

CO2; a colorless and odorless gas which is the fourth most abundant constituent of dry air

Circulation

The flow, or movement, of a fluid (e.g., water or air) in or through a given area or volume.

Climate Model

Mathematical model for quantitatively describing, simulating, and analyzing the interactions between the atmosphere and underlying surface (e.g., ocean, land, and ice).

Conduction

Flow of heat in response to a temperature gradient within an object or between objects that are in physical contact.

Current Meter

In hydrologic terms, device used to measure the water velocity or current in a river.
Degradation

In hydrologic terms, the geologic process by means of which various parts of the surface of the earth are worn down and carried away and their general level lowered, by the action of wind and water.

Detritus

In hydrologic terms,

(1) The heavier mineral debris moved by natural watercourses, usually in bed-load form.

(2) The sand, grit, and other coarse material removed by differential sedimentation in a relatively short period of detention.

Dew Point Depression

The difference in degrees between the air temperature and the dew point.

Fall Wind

A strong, cold, down slope wind

High Wind

Sustained wind speeds of 40 mph or greater lasting for 1 hour or longer, or winds of 58 mph or greater for any duration.

High Wind Advisory

This product is issued by the National Weather Service when high wind speeds may pose a hazard. The criteria for this advisory varies from state to state. In Michigan, the criteria is sustained non-convective (not related to thunderstorms) winds greater than or equal to 30 mph lasting for one hour or longer, or winds greater than or equal to 45 mph for any duration.

Humidity

Generally, a measure of the water vapor content of the air. Popularly, it is used synonymously with relative humidity.

Humidity Recovery

The change in relative humidity over a given period of time; generally between late evening and sunrise. The moisture change in the fine fuels during this period is directly related to the amount of humidity recovery.

Hydrometeor

A particle of condensed water (liquid, snow, ice, graupel, hail) in the atmosphere.

Hygrometer

An instrument which measures the humidity of the air.

ΗZ

1) Haze- An aggregation in the atmosphere of very fine, widely dispersed, solid or liquid particles, or both, giving the air an opalescent appearance that subdues colors.

(or)

2) Hertz- An international unit of frequency equal to one cycle per second, and named after a German physicist.

Infiltration

In hydrologic terms, movement of water through the soil surface into the soil.

Infiltration Capacity

In hydrologic terms, the maximum rate at which water can enter the soil at a particular point under a given set of conditions.

Infiltration Index

In hydrologic terms, an average rate of infiltration, in inches per hour, equal to the average rate of rainfall such as that the volume of rainfall at greater rates equals the total direct runoff.

Infiltration Rate

In hydrologic terms,

- 1. The rate at which infiltration takes place expressed in depth of water per unit time, usually in inches per hour.
- The rate, usually expressed in cubic feet per second, or million gallons per day per mile of waterway, at which ground water enters an infiltration ditch or gallery, drain, sewer, or other underground conduit.

Isotach

A line connecting points of equal wind speed.

Isotherm

A line connecting points of equal temperature

Jet

A fast-moving wind current surrounded by slower moving air.

Kinetic Energy

Energy that a body has as a result of its motion. Mathematically, it is defined as one-half the product of a body's mass and the square of its speed ($KE = 1/2 \times mass \times velocity$ squared).

Laminar Flow

Streamline flow in which successive flow particles follow similar path lines and head loss varies with velocity to the first power.

Latent Heat

Heat absorbed or released during a change of phase at constant temperature and pressure

Latitude

(abbrev. LAT) The location north or south in reference to the equator, which is designated at zero (0) degrees. Lines of latitude are parallel to the equator and circle the globe. The North and South poles are at 90 degrees North and South latitude.

Local Convective Wind

In fire weather terminology, local thermally driven winds arising over a comparatively small area and influenced by local terrain. Examples include sea and land breezes, lake breezes, diurnal mountain wind systems and columnar convective currents.

Longitude

The location east or west in reference to the Prime Meridian, which is designated as zero (0) degrees longitude. The distance between lines of longitude are greater at the equator and smaller at the higher latitudes, intersecting at the earth's North and South Poles. Time zones are correlated to longitude.

Madden-Julian Oscillation

(abbrev. MJO)- Tropical rainfall exhibits strong variability on time scales shorter than the seasonal El Niño-Southern Oscillation (ENSO). These fluctuations in tropical rainfall often go through an entire cycle in 30-60 days, and are referred to as the Madden-Julian Oscillation or intraseasonal oscillations. The intraseasonal oscillations are a naturally occurring component of our coupled ocean-atmosphere system. They significantly affect the atmospheric circulation throughout the global Tropics and subtropics, and also strongly affect the wintertime jet stream and atmospheric circulation features over the North Pacific and western North America. As a result, they have an important impact on storminess and temperatures over the United States. During the summer these oscillations have a modulating effect on hurricane activity in both the Pacific and Atlantic basins.

Marine Weather Statement

A National Weather Service product to provide mariners with details on significant or potentially hazardous conditions not otherwise covered in existing marine warnings and forecasts. Marine weather statements are also used to supplement special marine warnings.

Maximum Temperature

This is the highest temperature recorded during a specified period of time. Common time periods include 6, 12 and 24 hours. The most common reference is to the daily maximum temperature, or "high."

Mean Annual Temperature

The average temperature for the entire year at any given location.

Mean Sea Level

(MSL) - The arithmetic mean of hourly water elevations observed over a specific 19-year tidal epoch.

Mercury Barometer

An instrument for measuring atmospheric pressure. The instrument contains an evacuated and graduated glass tube in which mercury rises or falls as the pressure of the atmosphere increases or decreases.

Mesoclimate

The climate of a small area of the earth's surface which may differ from the general climate of the district.

Meteorologist

A person who studies meteorology. There are many different paths within the field of meteorology. For example, one could be a research meteorologist, radar meteorologist, climatologist, or operational meteorologist.

Meteorology

The science dealing with the atmosphere and its phenomena. A distinction can be drawn between meteorology and climatology, the latter being primarily concerned with average, not actual, weather conditions.

Orographic Precipitation

Precipitation which is caused by hills or mountain ranges deflecting the moisture-laden air masses upward, causing them to cool and precipitate their moisture.

Precision

The accuracy with which a number can be represented, i.e., the number of digits used to represent a number.

RADAR

Acronym for **RA**dio **D**etection **A**nd **R**anging; a radio device or system for locating an object by means of ultrahigh-frequency radio waves reflected from the object and received, observed, and analyzed by the receiving part of the device in such a way that characteristics (as distance and direction) of the object may be determined.

Radar Beam

The straight line that a radar pulse travels along. As the radar beam gets further away from the radar, it gets wider and wider. In order for a precipitation target to be detected by the radar, it must fill the entire radar beam; therefore, the radar will have a difficult time detecting small showers and thunderstorms at a great distance from the radar.

Radar Cross Section

The area of a fictitious, perfect reflector of electromagnetic waves (e.g., metal sphere) that would reflect the same amount of energy back to the radar as the actual target (e.g., lumpy snowflake).

Radar Meteorology

Branch of meteorology that uses radars for weather observations and forecasts.

Radar Range

Distance from the radar antenna. The WSR-88D radar has a range for velocity products out to 124 nautical miles and reflectivity products out to 248 nautical miles.

Rain Gauge

An instrument for measuring the quantity of rain that has fallen.

Eccentricity

A dimensionless quantity describing the elliptical shape of a planet's orbit.

Sea Level Pressure

The sea level pressure is the atmospheric pressure at sea level at a given location. When observed at a reporting station that is not at sea level (nearly all stations), it is a correction of the **station pressure** to sea level. This correction takes into account the standard variation of pressure with height and the influence of temperature variations with height on the pressure. The temperature used in the sea level correction is a twelve hour mean, eliminating diurnal effects. Once calculated, horizontal variations of sea level pressure may be compared for location of high and low pressure areas and fronts.

Sea Surface Temperatures

The term refers to the mean temperature of the ocean in the upper few meters.

Signal-to-Noise Ratio

A ratio that measures the comprehensibility of data, usually expressed as the signal power divided by the noise power, usually expressed in decibels (dB).

Significant Wave Height

The mean or average height of the highest one third of all waves in a swell train or in a wave generating region. It approximates the value an experienced observer would report if visually estimating sea height. When expressed as a range (e.g. Seas 2-4 ft), indicates a degree of uncertainty in the forecast and/or expected changing conditions (not that all waves are between 2-4 ft). Generally, it is assumed that individual wave heights can be described using a Rayleigh distribution.

Spectral Density

A radar term for the distribution of power by frequency.

Spectral Wave Density

On a buoy report, energy in (meter*meter)/Hz, for each frequency bin (typically from 0.03 Hz to 0.40 Hz).

Spectral Wave Direction

On a buoy report, mean wave direction, in degrees from true North, for each frequency bin.

Spectrum Width

This WSR-88D radar product depicts a full 360 degree sweep of spectrum width data indicating a measure of velocity dispersion within the radar sample volume. It is available for every elevation angle sampled, it provides a measure of the variability of the mean radial velocity estimates due to wind shear, turbulence, and/or the quality of the velocity samples. It is used to estimate turbulence associated with boundaries, thunderstorms, and mesocyclones; check the reliability of the velocity estimates; and locate boundaries (cold front, outflow, lake breeze, etc.).

VAD Wind Profile

A radar plot of horizontal winds, derived from VAD data, as a function of height above a Doppler Radar. The display is plotted with height as the vertical axis and time as the horizontal axis (a so-called time-height display), which then depicts the change in wind with time at various heights. This display is useful for observing local changes in vertical wind shear, such as backing of low-level winds, increases in speed shear, and development or evolution of nearby jet streams (including low-level jets). This product often is referred to erroneously as a VAD

Valid Time

The period of time during which a forecast or warning, until it is updated or superseded by a new forecast issuance, is in effect.

Vapor Pressure

The partial pressure of water vapor in an air-water system.

Variance

A measure of variability.

Very Windy

30 to 40 mph winds.

Wave Steepness

The ratio of wave height to wavelength and is an indicator of wave stability. When wave steepness exceeds a 1/7 ratio; the wave typically becomes unstable and begins to break.

Wave Trough

The lowest part of the wave.

Warm Front

A transition zone between a mass of warm air and the colder air it is replacing

Warm Sector

A region of warm surface air between a cold front and a warm front

Warning

A warning is issued when a hazardous weather or hydrologic event is occurring, is imminent, or has a very high probability of occurring. A warning is used for conditions posing a threat to life or property.

Wave Crest

The highest part of a wave

Wave Height

Distance from wave trough to wave crest.

Wave Period

Time, in seconds, between the passage of consecutive wave crests past a fixed point.

Wave Spectrum

The distribution of wave energy with respect to wave frequency or period. Wave spectra assist in differentiating between wind waves and swell.

Wave Trough

The lowest part of the wave.

Wavelength

Distance between crests or troughs of a wave.

Weighing-Type Precipitation Gage

A rain gage that weighs the rain or snow which falls into a bucket set on a platform of a spring or lever balance. The increasing weights of its contents plus the bucket are recorded on a chart. The record thus shows the accumulation of precipitation.

Whirlwind

A small, rotating column of air; may be visible as a dust devil

Wind Direction

The true direction **from which** the wind is blowing at a given location (i.e., wind blowing from the north to the south is a north wind). It is normally measured in tens of degrees from 10 degrees clockwise through 360 degrees. North is 360 degrees. A wind direction of 0^0 is only used when wind is calm.

Wind Field

The three-dimensional spatial pattern of winds.

Wind Rose

A diagram, for a given locality or area, showing the frequency and strength of the wind from various directions.

Zero Datum

In hydrologic terms, a reference "zero" elevation for a stream or river gage. This "zero" can be referenced (usually within ten feet of the bottom of the channel) to mean sea level, or to any other recognized datum.