WORLD METEOROLOGICAL ORGANIZATION

JOINT WMO/IOC TECHNICAL COMMISSION FOR OCEANOGRAPHY AND MARINE METEOROLOGY (JCOMM) SHIP OBSERVATIONS TEAM (SOT)

SOT-8 / Doc. 10.2.1 (08.04.2015)

ITEM: 10.2.1

CAPE TOWN, SOUTH AFRICA, 20-24 APRIL 2015

EIGHTH SESSION

Original: ENGLISH

GLOBAL COLLECTING CENTRES (GCC) REPORT ON THE VOS AND VOSCLIM

(Submitted by United Kingdom and Germany)

Summary and purpose of the document

This document presents the 2014 Global Collecting Centre Annual Report including developments and future plans affecting GCC operations. It provides status on volume and frequency of delayed-mode data being received and processed by the GCCs which are then subsequently forwarded to the eight Responsible Members and VOSClim Data Assembly Centre.

ACTION PROPOSED

The Team will review the information contained in this report, and comment and make decisions or recommendations as appropriate. See part A for the details of recommended actions.

The Team will be invited to consider the role of the GCCs in processing the delayed-mode IMMT (International Marine Meteorological Tape-format) data and the associated quality control standards, especially in the framework of the modernization of the MCSS and the development of the new Marine Climate Data System (MCDS) per Recommendation 2 (JCOMM-4).

Appendices: A Full report of the GCCs to the eighth Session of the SOT

- **B** GCC Annual Report 2014 (English)
- **C** Layout of the International Maritime Meteorological Tape, Version 5 (IMMT-5)
- D Minimum Quality Control Standard, Version 7 (MQCS-7)

- A - DRAFT TEXT FOR INCLUSION IN THE FINAL REPORT

10.2.1.1 The Team recalled that under the revised Marine Climatological Summaries Scheme (MCSS), adopted by the eleventh session of the Commission for Marine Meteorology (CMM) (Lisbon, Portugal, April 1993), through Recommendation 11 (CMM-XI), the two Global Collecting Centres (GCCs) were established, in Germany and the United Kingdom, to: (i) collect all marine climatological data observed worldwide; (ii) ensure that minimum quality control procedures are applied; (iii) generate complete and duplicate global data sets; and (iv) provide these data sets to the Responsible Members under the MCSS.

10.2.1.2 The Team reviewed a consolidated 2014 report from the two GCCs. The report included a status on the volume and frequency of delayed-mode data being forwarded to the VOSClim Data Assembly Centre.

10.2.1.3 The Team also considered the role of the GCCs in processing the delayed-mode IMMT (International Maritime Meteorological Tape-format) data and the associated quality control standards.

10.2.1.4 The Team considered the new Marine Climate Data System (MCDS) and how the roles of MCSS members will migrate to the new data flow structure when it is introduced.

- 10.2.1.5. The Team made the following recommendations:
 - (i) Contributing Members (CMs) should submit their observations only once. If there is a requirement to resubmit data (e.g. quality improvements) then the GCCs should be made aware of this;
 - (ii) All CMs should submit data files in one IMMT format only preferably now IMMT-5 quality checked to MQCS-7 making use of its increased coding capabilities;
 - (iii) CMs not able to submit their data because of issues e.g. with digitizing or converting into the IMMT format, should contact GCCs for advice;
 - (iv) All VOSClim class ships should use the indicator for registered VOSClim ships in element 41 (observation Platform) of the newly adopted formats IMMT-4 and -5;
 - (v) All VOSClim class ship observations should include the additional VOSClim elements;
 - (vi) If possible CMs should ensure all masked call signs (i.e. 'SHIP') are converted back to the original ID prior to submission; and
 - (vii) SOT should stay up to date with TT-MCDS developments.
- 10.2.17. The Team decided on the following action items:
 - (i) All CMs that did not submit data during 2014 should do so in 2015 or alternatively contact GCC for advice (*action; CMs; end of 2015*); and
 - (ii) The GCC should proactively contact CM that have not submitted data for a number of years to offer assistance and encourage submission of data (*action; GCCs; end* 2015).

Appendices: 4

APPENDIX A

FULL REPORT OF THE GCCS TO THE EIGHTH SESSION OF THE SOT

1. VOS Data

The Marine Climatological Summaries Scheme (MCSS) was established by the WMO Commission for Marine Meteorology in 1963. In an effort to improve data flow and quality of global marine data two Global Collecting Centres (GCCs) were created in 1994.

The 2014 GCC report marks the 21th year of operation and is attached within Appendix B. The main highlights from the report are:

- 770,983 observations were received during 2014 from 18 countries, 2 fewer than the record high of 20 in 2013. Similarly, the number of observations contributed declined of the second consecutive year.
- 1008 VOS ships made observations in 2014.
- 92% of the data were observed in the last two years, 2013 and 2014.
- 72% of the received observations were coded in IMMT-4 format and 4% in the most recent IMMT-5 format. 22% of the received observations were coded in the older IMMT-3 format, and 1% still in IMMT-1 and IMMT-2 format.

Country Name	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	Total
Argentina					0
Australia	28	448	1.224		1.700
Brazil					0
Canada				310.490	310.490
Croatia		9.910			9.910
France	47.462		42.410	25.962	115.834
Germany	37.449		6.770	28.070	72.289
Greece					0
Hong Kong, China	937		586	2.848	4.371
India					0
Ireland	180			19.754	19.934
Israel					0
Italy					0
Japan	1.053	4.818	3.561	1.387	10.819
Kenya					0
Malaysia	133		30	108	271
Netherlands	4.128	5.996	7.198	5.926	23.248
New Zealand	3.316			1.660	4.976
Nigeria					0
Norway	14.175	14.033	15.075	15.790	59.073
Poland				1.117	1.117
Russian Federation	5.004	5.003	5.003	2.795	17.805
Singapore					0
South Africa	447	74			521
Sweden		20.800			20.800
United Kingdom	41.719	18.300	8.707	17.178	85.904
USA	3.125	3.968	2.225	2.603	11.921
18 of 27 Contributing Countries	159.156	83.350	92.789	435.688	770.983

Table 1: Observations received by GCCs in 2014

- When evaluated against the MQCS the majority of the reported elements were again found to be of good quality. Such elements were assigned a QC Flag of '1' meaning 'element appears correct'. For example frequently reported elements such as air pressure, wind direction, wind speed and sea surface temperature were flagged with a '1' in over 98% of cases, and air temperature in 92% of cases.
- There were 174 observations (0.02%) showing on-land positions. These are plotted as red dots in Figure 1.

2. VOSClim Data

The VOSClim Project was a long standing pilot within JCOMM's Voluntary Observing Ship's Scheme. It aimed at providing a high-quality subset of marine meteorological data with detailed information on how data have been obtained. These data are available in delayed mode and are of great value to both operational marine forecasting and global climate studies. The IMMT-4 and 5 formats include a VOSClim data indicator which should be selected if a ship has this capability.

Since July 2008, at the end of each quarter all VOS data including VOSClim data is disseminated. Responsible Member USA operates the VOSClim DAC where a subset of data of VOSClim ships is extracted from the quarterly file and stored at the DAC.

The National Climatic Data Centre (NCDC) VOSClim Data Assembly Centre (DAC) has transitioned from using the NCDC maintained VOSClim ship list to the list produced by E-SURFMAR (EUCOS-Surface Marine Operational Service). The E-SURFMAR database is now the primary source for VOSClim ship metadata. The first GCC VOSClim report using the E-SURFMAR database was produced for the 4th quarter of 2014.

Total Number	Total Number of Observations from VOSClim-Ships / Number of Observations with VOSClim-Elements from VOSClim-Ships /														
	Number of Observations with VOSCIim-Elements from not listed ships 2014														
Country Name 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter Total															
Australia	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
Canada	0	0	0	0	0	0	0	0	0	301.060	0	0	301.060	0	0
France	45.515	45.515	1.245	0	0	0	39.855	39.855	1.385	24.425	24.425	1.537	109.795	109.795	4.167
Germany	8.707	7.807	443	0	0	0	2.511	2.149	436	7.998	7.198	83	19.216	17.154	962
Hong Kong, China	0	0	0	0	0	0	0	0	0	0	0	47	0	0	47
India	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Japan	0	0	0	3.026	3.026	0	0	0	0	0	0	0	3.026	3.026	0
Netherlands	3.364	3.352	471	3.705	3.670	775	5.297	5.270	1.431	2.667	2.474	187	15.033	14.766	2.864
New Zealand	991	941	2	0	0	0	0	0	0	0	0	0	991	941	2
United Kingdom	32.351	25.036	1.082	15.925	11.188	166	6.802	4.682	353	12.988	9.590	586	68.066	50.496	2.187
USA	2.947	2.945	44	688	682	377	308	308	1.117	150	148	361	4.093	4.083	1.899
8 of 11 countries	93.875	85.596	3.287	23.344	18.566	1.318	54.773	52.264	4.723	349.288	43.835	2.801	521.280	200.261	12.129

Table 2: VOSClim Data Received in 2014 by Quarter

During 2014:

- 521,280 observations were received and processed from VOSClim registered ships by the GCCs during 2014.
- This makes up 68% of data received by the GCCs from the VOS fleet in 2014.
- 8 of the 11 CMs with registered VOSClim ships submitted observations (Table 2) in 2014. Note – This does not include CMs providing VOSClim reports from non-registered VOSClim ships.
- In 2014, the GCCs received data from over 358 listed VOSClim ships.
- 200,261 of the VOSClim observations (38%) contained the VOSClim defined additional elements.
- The CMs France and Japan provided 100% of VOSClim elements in the VOSClim reports.

3. Call Sign Masking

• In 2013 and 2014 the GCCs received only unmasked call signs from the CMs.

4. Developments and Future Changes

- Formats and Standards: IMMT-5 and MQCS-7 were adopted at JCOMM-4 in May 2012 and were in effect from June 2012. These include only minor updates of wording and QC limits (see Appendices C & D for the full IMMT-5 & MQCS-7). The 'MQC-software for CMs' was updated to MQCS-7 and the 7th version is available at http://www.wmo.int/pages/prog/amp/mmop/mqc_soft.html.
- <u>MCDS:</u> The concept of the Marine Climate Data System (MCDS) is being implemented. It encompasses a generic data flow structure with defined roles and tasks to be applied to all data types across JCOMM for the management of their climate data. A MCDS vision for 2020 and implementation plan were proposed and endorsed by JCOMM-4. The new JCOMM Task Team on the Marine Climate Data System (TT-MCDS) was formed and absorbs the work and tasks of the TT-DMVOS & TT-MOCS. Members of the Expert Team on Marine Climatology (ETMC) and Task Team on the Marine Climate Data System (TT-MCDS) held a joint meeting at CLIMAR-4 (June 2014). At the meeting the MCDS implementation plan for Data Acquisition Centres (DACs) and Global Data Assembly Centres (GDACs) was updated. The meeting also recognised that there was a need to review Technical Regulations to take MCDS developments into consideration. This is in progress:

East and West TT-MCDS teleconferences were held in December 2014 to discuss updates to the relevant sections of the WMO Guide to Marine Meteorological Services (No 471) and Manual on Marine Meteorological Services (No 558). New structures for the Marine Climatology sections were proposed with a view to having draft versions ready for ETMC-5 (June 2015). The membership of the TT-MCDS was also reviewed at the meeting. In 2014 the CMOC (Centre for Marine-Meteorological and Oceanographic Climate Data) application from the State Oceanic Administration (SOA) National Marine Data and Information Service (NMDIS) in Tianjin, China was successfully evaluated against the CMOC evaluation criteria proposed by the ETMC and Data Management Coordination Group (DMCG). A draft resolution for submission at the 17th WMO congress has been prepared to approve China as the first official CMOC.

- <u>WIS DCPC</u>: Both GCCs have been identified as 'Data Collection & Production Centres' (DCPCs) for the WMO Information System (WIS) and are able to provide nearly 19.3 million MQCS-checked and flagged observations received by the GCCs from 1996 to 2014. Additionally, all contributed original records are saved and available at <u>http://gisc.dwd.de/GISC_DWD/toExtendedSearch.do</u>
- <u>HQCS</u>: In 2014 the new Higher Quality Control Standard (HQCS) developed by DWD was used as the basis for a software package for automatic quality check to be used by the new MCDS GDACs).

Documentation of the code was translated into English and will be made available in 2015. New features include a new spatial check and an integrated land-sea-mask with an accuracy of 0.1 degree which helps to identify observations with on-land-positions and a climatology check based on the background fields using the ERA-Interim-Reanalysis 1981 – 2010.

• <u>Problems uncovered</u>: : During the first quarter of 2013 the GCCs discovered problems with coding of relative humidity in TurboWin version 5 and with the UK GCC processing of IMMT-4 and 5 data. RMs were made aware while both GCCs worked to resolve the issues. Problems with the UK processing software have now been rectified and the relative humidity issue will be addressed in the next TurboWin release. All contributed data affected by the TurboWin relative humidity problem are corrected before the next quarterly exchange.

APPENDIX B

Global Collecting Centre

Annual Report 2014

GCC Germany Deutscher Wetterdienst GCC

Bernhard-Nocht-Str. 76 20359 Hamburg Germany email: <u>gcc@dwd.de</u> <u>www.dwd.de/gcc</u>

GCC United Kingdom Met Office GCC S9 Saughton House Broomhouse Drive Edinburgh, EH11 3XQ Scotland, UK email:gcc@metoffice.gov.uk

Summary

In 2014, the GCCs received data from 18 Contributing Members, 2 fewer than the record high of 20 in 2013 (see Figure 1). Similarly, the number of observations contributed declined for the second consecutive year. The majority of the observations were made in the last two years, with the oldest records dating back to 1987.

All data, original and MQC-checked, are available on the German WMO Information System (WIS) GISC <u>http://gisc.dwd.de/GISC_DWD/toSimpleSearch.do</u>.

Background

The two Global Collecting Centres (GCCs) for JCOMM's Marine Climatological Summaries Scheme (MCSS) were set up in 1993 to improve data flow and quality of delayed-mode Voluntary Observing Ship (VOS) data. Data is received regularly by the GCCs (Figure 1 and Appendix A) from the MCSS Contributing Members (CMs) (Appendix B). This is then quality ensured to the Minimum Quality Control Standard (MQCS-7) and, once quarterly, made available to Responsible Members (RMs) via FTP. For further information about the MCSS and GCCs work, terms of reference, data format and QC standards see WMO Manual 558 and WMO Guide 471.

Figure 1: Numbers of contributed observations and active Contributing Members by year since

GCCs began to operate

VOS Data Volumes 2014

- 770,983 observations were received and processed by the GCCs during 2014.
- 18 CMs contributed data out of a total of 27 registered Members/Member States.
- 1,008 VOS ships made observations in 2014.
- The observation dates of the contributed data ranged from 1987 to 2014, however, 92% of the data were observed in the last two years, 2013 and 2014.
- 72% of the received observations were coded in IMMT-4 format and 4% in the most recent IMMT-5 format.
- 22% of the received observations were coded in the older IMMT-3 format, and 1% still in IMMT-1 and IMMT-2 format.

Number of CM Observations 2014											
Country Name	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	Total						
Argentina											
Australia	28	448	1.224		1.70						
Brazil											
Canada				310.490	310.490						
Croatia		9.910			9.910						
France	47.462		42.410	25.962	115.834						
Germany	37.449		6.770	28.070	72.28						
Greece											
Hong Kong, China	937		586	2.848	4.37						
India											
Ireland	180			19.754	19.934						
Israel											
Italy											
Japan	1.053	4.818	3.561	1.387	10.819						
Kenya											
Malaysia	133		30	108	27						
Netherlands	4.128	5.996	7.198	5.926	23.24						
New Zealand	3.316			1.660	4.976						
Nigeria											
Norway	14.175	14.033	15.075	15.790	59.07						
Poland				1.117	1.11						
Russian Federation	5.004	5.003	5.003	2.795	17.80						
Singapore											
South Africa	447	74			52 ⁻						
Sweden		20.800			20.800						
United Kingdom	41.719	18.300	8.707	17.178	85.904						
USA	3.125	3.968	2.225	2.603	11.92						
18 of 27 Contributing Countries	159.156	83.350	92.789	435.688	770.983						

Figure 2: Number of observations by CMs for each quarter of 2014. (CMs without any contribution in 2014 are marked in red)

VOS Data Quality 2014

- When evaluated against the MQCS the majority of the reported elements were again found to be of good quality. Such elements were assigned a QC Flag of '1' meaning 'element appears correct'. For example frequently reported elements such as air pressure, wind direction, wind speed and sea surface temperature were flagged with a '1' in over 98% of cases, and air temperature in 92% of cases.
- There were 174 observations (0.02%) showing on-land positions. These are plotted as red dots in Figure 3.
- The TurboWin coding problem of the previous year persists leading to a number of IMMT-4 and -5 files being submitted with erroneous relative humidity values. These data were identified and the corrected files made available on the German GISC (Global Information System Centre). Until the coding problem is resolved, the GCCs will correct the data before processing and distribution.
- No previously exchanged datasets had to be corrected in 2014.
- Quarterly analysis of the exchanged datasets identified 171 duplicate observations (0.02%) that were rejected by the MQCS. Analysis of the yearly dataset highlighted that the number of observations rejected increased to 226. These observations failed MQC but were included at quarterly exchange.
- Many observations containing erroneous positions were selected and, after consultation with the appropriate CM, were deleted.
- Before the quarterly data exchanges the duplicates due to previously submitted observations were deleted. Unfortunately, duplicate contributions or files that were later present in another quarter cannot be identified.
- The RM USA (NOAA) supports the ICOADS (International Comprehensive Ocean-Atmosphere Data Set) with the quarterly MQC-checked dataset from the GCCs.

Figure 3: Distribution of observations received in 2014

- 521,280 observations were received and processed from VOSClim registered ships by the GCCs during 2014.
- This makes up 68% of data received by the GCCs from the VOS fleet in 2014.
- 8 of the 11 CMs with registered VOSClim ships submitted observations (Figure 4) in 2014.
- In 2014, the GCCs received data from over 358 listed VOSClim ships.
- 200,261 of the VOSClim observations (38%) contained the VOSClim defined additional elements.
- The CMs France and Japan provided 100% of VOSClim elements in the VOSClim reports.

Figure 4: VOSClim class observations submitted by CMs for each quarter of 2014 (CMs without any contribution in 2014 are marked in red)

Total Number of	Total Number of Observations from VOSClim-Ships / Number of Observations with VOSClim-Elements from VOSClim-Ships / Number of Observations with VOSClim-Elements from not listed ships 2014														
					••					lioto a c		<u></u>			
Country Name 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter To								Total							
Australia	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
Canada	0	0	0	0	0	0	0	0	0	301.060	0	0	301.060	0	0
France	45.515	45.515	1.245	0	0	0	39.855	39.855	1.385	24.425	24.425	1.537	109.795	109.795	4.167
Germany	8.707	7.807	443	0	0	0	2.511	2.149	436	7.998	7.198	83	19.216	17.154	962
Hong Kong, China	0	0	0	0	0	0	0	0	0	0	0	47	0	0	47
India	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Japan	0	0	0	3.026	3.026	0	0	0	0	0	0	0	3.026	3.026	0
Netherlands	3.364	3.352	471	3.705	3.670	775	5.297	5.270	1.431	2.667	2.474	187	15.033	14.766	2.864
New Zealand	991	941	2	0	0	0	0	0	0	0	0	0	991	941	2
United Kingdom	32.351	25.036	1.082	15.925	11.188	166	6.802	4.682	353	12.988	9.590	586	68.066	50.496	2.187
USA	2.947	2.945	44	688	682	377	308	308	1.117	150	148	361	4.093	4.083	1.899
8 of 11 countries	93.875	85.596	3.287	23.344	18.566	1.318	54.773	52.264	4.723	349.288	43.835	2.801	521.280	200.261	12.129

Recent Developments

MCSS and GCC Anniversaries

2014 marked the 50th anniversary of the founding of the marine climatological summaries scheme which was celebrated in a special session at the Fourth JCOMM Workshop on Advances in Marine Climatology (CLIMAR-4) in Asheville, USA. DWD put together a video highlighting the successes of the scheme featuring interviews with a number of experts who had been involved over the years. The 20th year of operation of the GCCs (2013) was also celebrated at the workshop. Over 22.5 million observations, contributed by 28 nations, were collected, quality checked and distributed by the GCCs.

MCDS Developments

Members of the Expert Team on Marine Climatology (ETMC) and Task Team on the Marine Climate Data System (TT-MCDS) met at CLIMAR-4 (June 2014). At the meeting the MCDS implementation plan for Data Acquisition Centres (DACs) and Global Data Assembly Centres (GDACs) was updated. The meeting also recognised that there was a need to review Technical Regulations to take MCDS developments into consideration.

East and West TT-MCDS teleconferences were held in December 2014 to discuss updates to the relevant sections of the WMO Guide to Marine Meteorological Services (No 471) and Manual on Marine Meteorological Services (No 558). New structures for the Marine Climatology sections were proposed with a view to having draft versions ready for ETMC-5 (June 2015). The membership of the TT-MCDS was also reviewed at the meeting.

In 2014 the CMOC (Centre for Marine-Meteorological and Oceanographic Climate Data) application from the State Oceanic Administration (SOA) National Marine Data and Information Service (NMDIS) in Tianjin, China was successfully evaluated against the CMOC evaluation criteria proposed by the ETMC and Data Management Coordination Group (DMCG). A draft resolution for submission at the 17th WMO congress has been prepared to approve China as the first official CMOC.

Assisting CM

DWD assisted Canada and the Netherlands in preparing their contributions in 2014.

HQC development

In 2014 the new Higher Quality Control Standard (HQCS) developed by DWD was used as the basis for a software package for automatic quality checks.

Documentation of the code was translated into English and will be made available in 2015. New features include:

A new spatial check and an integrated land-sea-mask with an accuracy of 0.1 degree which helps to identify observations with on-land-positions.

A climatology check based on the background fields using the ERA-Interim-Reanalysis 1981 – 2010.

VOSClim DAC

The National Climatic Data Centre (NCDC) VOSClim Data Assembly Centre (DAC) has transitioned from using the NCDC maintained VOSClim ship list to the list produced by E-SURFMAR (EUCOS-Surface Marine Operational Service). The E-SURFMAR database is now the primary source for VOSClim ship metadata. The first GCC VOSClim report using the E-SURFMAR database was produced for the 4th quarter of 2014.

Recommendations

To improve data availability and quality, and in light of the recent developments, the GCCs make the following recommendations:

- CMs should submit their observations only once. If there is a requirement to resubmit data (e.g. quality improvements) then the GCCs should be made aware of this.
- CMs should submit data files in one IMMT format only preferably now IMMT-5.
- Where problems arise that prevent a CM submitting its data e.g. when digitizing or converting into the IMMT format, GCCs should be asked for advice.
- By applying MQCS to data prior to submission, CMs can identify and solve significant problems, in particular issues within date, time and position.
- All VOSClim class ships should use the indicator for registered VOSClim ships in element 41 (observation Platform), in the newly adopted formats IMMT-4 and -5, with the option set to 4.
- All VOSClim class ship observations should include the additional VOSClim elements.
- CMs with VOS ships reporting the additional VOSClim elements should consider listing the vessels within the VOSClim program
- If possible convert all masked call signs (i.e. 'SHIP') back to the original ID prior to submission.
- CMs and RMs should stay up to date with TT-MCDS developments in order to ensure they know how they might be affected in the future or how they may contribute in the present. This can be done by attending meetings or reading workshop and session reports available on the JCOMM website.
- CMs and RMs should consider, if they wish to apply to be Data Acquisition Centres (DACs) and Global Data Assembly Centres (GDACs) in the future MCDS.

	ISO Alpha-2 code																						Number of Years with Contributions 1994 - 2014
		1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	
Argentina	AR								Х		Х	Х	Х	Х	Х	Х							7
Australia	AU							Х		Х	Х	Х	х		Х	Х	Х	х	х		Х	Х	12
Brazil	BR	Х	Х	х	Х																		4
Canada	CA																		х	х	х	Х	4
Croatia	HR				Х	Х	Х	Х	Х												Х	Х	7
France	FR	Х	Х	х	Х	Х			Х		Х	Х	х	х	Х	Х	Х		х	Х	х	Х	17
Germany	DE	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	21
Greece	GR																	х		х	х		3
Hong Kong, China	HK	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	21
India	N	Х	Х	х	Х	х	х	х	Х	Х	Х	х	х	х	Х	Х	Х	х	х	х	х		20
Ireland	IE			Х	Х	Х				Х							Х	Х	Х	Х		Х	9
Israel	L		Х	х	Х	х	х	х	Х	Х	Х	х	х	х	Х		Х	х	х	х	х		18
Italy	п																				Х		1
Japan	JP	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	21
Kenya	KE																						0
Malaysia	MY	Х		х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	х	Х	Х	Х	Х	19
Netherlands	NL	Х	Х	х		Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	х	х	Х	Х	Х	19
New Zealand	NZ													Х	Х	Х	Х	х	х	Х		Х	8
Nigeria	NG																						0
Norway	NO	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х			Х	Х	Х	18
Poland	PL.	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	21
Russian Federation	RU		Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х	х	Х	Х	Х	20
Singapore	SG		Х	Х	Х	Х					Х	Х	Х	Х						Х			9
South Africa	ZA						Х	Х	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	16
Sweden	SE			Х													Х	Х	Х		Х	Х	6
United Kingdom	GB	Х	Х	х	х	Х	х	х		Х	Х	х		х	Х	х	Х	х	х	х	х	Х	19
United States	US	Х	Х	Х	Х	Х	Х	Х		Х	Х				Х	Х	Х	Х	х	Х	Х	Х	17

Appendix A: CM contribution by year since GCCs began operations in 1994

Appendix B: Countries and regional responsibilities under the MCSS (updated 2009)

Appendix C: List of acronyms

APP	Ancillary Pilot Project
СМ	Contributing Member
СМОС	Centre for Marine Meteorological and Oceanographic Climate Data
DAC	Data Acquisition Centre
DMCG	Data Management Coordination Group
DWD	Deutscher Wetterdienst
E-	EUCOS Surface Marine Programme
SURFMAR	Expert Team on Marine Climatology
ETMC	File Transfer Protocol
FTP	
GCC	Global Collecting Centre (MCSS / JCOMM)
GDAC	Global Data Assembly Centre
GISC	Global Information System Centre (of WIS)
HQCS	Higher Quality Control Standard
ICOADS	International Comprehensive Ocean-Atmosphere Data Set (USA)
IMMT	International Maritime Meteorological Tape Format
IOC	Intergovernmental Oceanographic Commission of UNESCO
IODE	International Oceanographic Data and Information Exchange
JCOMM	Joint WMO/IOC Technical Commission for Oceanography and Marine
	Meteorology
MCDS	Marine Climate Data System
MCSS	Marine Climatological Summaries Scheme
MQCS	Minimum Quality Control Standard
NCDC	National Climatic Data Centre
NMDIS	National Marine Data and Information Service
NOAA	National Oceanic and Atmospheric Administration (USA)
ODP	Ocean Data Portal
QC	Quality Control
RM	Responsible Member
SOA	State Oceanic Administration
SOI	Ship Observations Leam
TT-MCDS	Task Team on Marine Climate Data System of ETMC
UK	United Kingdom
VUS	Voluntary Observing Ship
VUSCIIM	VUS Climate (Subset for High Quality Data)
WIS	WIND Information System
ONIN	world Meteorological Organization

APPENDIX C

LAYOUT FOR THE INTERNATIONAL MARITIME METEOROLOGICAL TAPE (IMMT) FORMAT

IMMT-5 (Version 5)

Notes:

- (a) The representation for missing data in any field is all blank(s).
- (b) Many of the "Codes" in the IMMT format match "symbolic letters" as defined in the *Manual on Codes* (WMO–No.306) for the traditional alphanumeric (e.g. FM 13) SHIP code. However, the elements added for the VOSClim project (as introduced for IMMT-2), for example, did not appear in WMO–No.306, thus an effort was made to select unique new Codes to avoid conflicts in meaning between symbolic letter groups in WMO–No.306 versus Codes defined only in IMMT.

Element	<u>Character</u>	Code	<u>Element</u>	Coding procedure
Number	Number			
1	1	iŢ	Format/temperature indicator	 3 – temperatures in tenths of °C 4 – temperatures in halves of °C 5 – temperatures in whole °C [Note: codes 1-2 were previously used to refer to the obsolete IMMPC format; current codes all refer to the IMMT format]
2	2-5	AAAA	Year UTC	Four digits
3	6-7	MM	Month UTC	01 – 12 January to December
4	8-9	YY	Day UTC	01 – 31
5	10-11	GG	Time of observation	Nearest whole hour UTC, WMO specifications
6	12	Qc	Quadrant of the globe	WMO code table 3333
7	13-15	$L_aL_aL_a$	Latitude	Tenths of degrees, WMO specifications
8	16-19	$L_{o}L_{o}L_{o}L_{o}$	Longitude	Tenths of degrees
9	20		Cloud height (h) and visibility (VV) measuring indicator	0 – h and VV estimated 1 – h measured, VV estimated 2 – h and VV measured 3 – h estimated, VV measured
10	21	h	Height of clouds	WMO code table 1600
11	22-23	VV	Visibility	WMO code table 4377
12	24	Ν	Cloud amount	Oktas, WMO code table 2700; show 9 where applicable
13	25-26	dd	True wind direction	Tens of degrees, WMO code table 0877; show 00 or 99 where applicable
14	27	İw	Indicator for wind speed	WMO code table 1855
15	28-29	ff	Wind speed	Units of knots or meters per second, hundreds omitted; values in excess of 99 knots are to be indicated in units of meters per second and i _w encoded accordingly; the method of estimation or measurement and the units used (knots or meters per second) are indicated in element 14. Wind is at observation height or anemometer height (i.e. it is not reduced to 10m).

SOT-8 / Doc. 10.2.1

<u>Element</u> <u>Number</u>	<u>Character</u> <u>Number</u>	<u>Code</u>	<u>Element</u>	<u>(</u>	Coding procedure
16	30	Sn	Sign of temperature	WMO code table	3845
17	31-33	TTT	Air temperature	Tenths of degree	es Celsius
18	34	St	Sign of dew-point temperature	 0 – positive or zere temperature 1 – negative measure 2 – iced measure 5 – positive or zere temperature 6 – negative con 7 – iced compute 	ero measured dew-point asured dew-point temperature ed dew-point temperature ero computed dew-point nputed dew-point temperature ed dew-point temperature
19	35-37	$T_d T_d T_d$	Dew-point temperature	Tenths of degree	es Celsius
20	38-41	PPPP	Air pressure	Tenths of hectop	pascals
21	42-43	ww	Present weather	WMO code table	e 4677 or 4680
22	44	W_1	Past weather	WMO code table	e 4561 or 4531
23	45	W_2	Past weather	WMO code table	e 4561 or 4531
24	46	N _h	Amount of lowest clouds	As reported for C for C_M , in oktas;	C_L or, if no C_L cloud is present, WMO code table 2700
25	47	CL	Genus of CL clouds	WMO code table	9 0513
26	48	C _M	Genus of CM clouds	WMO code table	0515
27	49	C _H	Genus of CH clouds	WMO code table	9 0509
28	50	Sn	Sign of sea-surface temperature	WMO code table	3845
29	51-53	$T_{W}T_{W}T_{W}$	Sea surface temperature	Tenth of degrees	s Celsius
30	54		Indicator for sea- surface temperature measurement	0 – Bucket them 1 – Condenser 2 – Trailing them 3 – Hull contact 4 – "Through hu 5 – Radiation th 6 – Bait tanks th 7 – Others	mometer inlet mistor sensor ull" sensor nermometer nermometer
31	55		Indicator for wave measurement	Shipborne wave recorder	 0 - Wind sea and swell estimated 1 - Wind sea and swell measured 2 - Mixed wave measured, swell estimated 3 - Other combinations measured and estimated
				Buoy	 4 – Wind sea and swell measured 5 – Mixed wave measured, swell estimated 6 – Other combinations measured and estimated
				Other measurement system	 7 – Wind sea and swell measured 8 – Mixed wave measured, swell estimated 9 – Other combinations measured and estimated

SOT-8 / Doc. 10.2.1

<u>Element</u> <u>Number</u>	<u>Character</u> <u>Number</u>	<u>Code</u>	<u>Element</u>	Coding procedure
32	56-57	P_WP_W	Period of wind waves or of measured waves	Whole seconds; show 99 where applicable in accordance with Note (3) under specification of $P_W P_W$ in WMO–No.306.
33	58-59	HwHw	Height of wind waves or of measured waves	Half-meter values. Examples: Calm or less than ¼m to be encoded 00; 3½m to be encoded 07; 7m to be encoded 14; 11½m to be encoded 23.
34	60-61	$d_{W1}d_{W1} \\$	Direction of predominant swell waves	Tens of degrees, WMO code table 0877; encoded 00 or 99 where applicable. Blanks = no observation of waves attempted.
35	62-63	$P_{W1}P_{W1}$	Period of predominant swell waves	Whole seconds; encoded 99 where applicable (see under element 32)
36	64-65	$H_{W1}H_{W1}$	Height of predominant swell waves	Half-meter values (see under element 33)
37	66	ls	Ice accretion on ships	WMO code table 1751
38	67-68	EsEs	Thickness of ice accretion	In centimeters
39	69	Rs	Rate of ice accretion	WMO code table 3551
40	70		Source of observation	 0 - Unknown 1 - Logbook (paper) 2 - National Telecommunication channels 3 - National Publications 4 - Logbook (electronic) 5 - Global Telecommunication channels (GTS) 6 - International Publications [Note: Formerly (usage now discontinued): codes 1-3 also referred to "National data exchange," and codes 4-6 also referred to "International data exchange"; distinction added between paper and electronic logbook!
41	71		Observation platform	 0 - Unknown 1 - Selected ship 2 - Supplementary ship 3 - Auxiliary ship 4 - Registered VOSClim ship 5 - Fixed sea station (e.g., rig or platform) 6 - Coastal station [Note: 7 - Reserved] [Note: 8 - Reserved] 9 - Others/data buoy [Note: Formerly (usage now discontinued): code 4 referred to "Automated station/data buoy;" and codes 7-8 referred to "Aircraft" and "Satellite," respectively]
42	72-78		Ship's call sign	Ship's call sign stored left-justified (with right- blank fill) as follows: 7-character call sign: columns 72–78 6-character call sign: columns 72–77 5-character call sign: columns 72–76 4-character call sign: columns 72–75 3-character call sign: columns 72–74
43	79-80		Country which has recruited the ship	According to the 2-character alphabetical codes assigned by the International Organization for Standardization (ISO)

SOT-8 / Doc. 10.2.1

<u>Element</u> Number	<u>Character</u>	Code	<u>Element</u>	<u>Co</u>	ding procedure
<u>Indifiber</u>	<u>INUMBER</u>				
44	81		National use		
45	82		Quality control indicator	 0 - no QC has be 1 - manual QC or 2 - automated QC MQC) 3 - automated QC checks) 4 - manual and au with time-sequence 5 - manual and au time-sequence 7 - [reserved] 8 - [reserved] 9 - national syste furnished to W 	en performed ly C only (such as using only C only (with time sequence utomated QC (superficial) utomated QC (superficial; ence checks) utomated QC (intensive; with checks) m of QC (information to be MO)
46	83	ix	Weather data	1 – Manual	
				4 – Automatic	If present and past weather data included Code tables 4677 and 4561 used
				7 – Automatic	If present and past weather data included Code tables 4680 and 4531 used
47	84	İR	Indicator for inclusion or omission of precipitation data	WMO code table ⁻	1819
48	85-87	RRR	Amount of precipitation which has fallen during the period preceding the time of observation, as indicated by t_R	WMO code table 3	3590
49	88	t _R	Duration of period of reference for amount of precipitation, ending at the time of the report	WMO code table 4	4019
50	89	Sw	Sign of wet-bulb temperature	 0 – positive or zer temperature 1 – negative meas 2 – iced measured 5 – positive or zer temperature 6 – negative comp 7 – iced computed 	o measured wet-bulb sured wet-bulb temperature d wet-bulb temperature o computed wet-bulb buted wet-bulb temperature d wet-bulb temperature
51	90-92	$T_b T_b T_b$	Wet-bulb temperature	In tenths of degre element 50	e Celsius, sign given by
52	93	а	Characteristic of pressure tendency during the three hours preceding the time of observation	WMO code table (0200

SOT-8 / Doc. 10.2.1

<u>Element</u> Number	<u>Character</u> <u>Number</u>	<u>Code</u>	<u>Element</u>	Coding procedure
53	94-96	ррр	Amount of pressure tendency at station level during the three hours preceding the time of observation	In tenths of hectopascal
54	97	Ds	True direction of resultant displacement of the ship during the three hours preceding the time of observation	WMO code table 0700
55	98	Vs	Ship's average speed made good during the three hours preceding the time of observation	WMO code table 4451
56	99-100	$d_{W2}d_{W2} \\$	Direction of secondary swell waves	Tens of degrees, WMO code table 0877; encoded 00 or 99 where applicable. Blanks – no observation of waves attempted.
57	101- 102	$P_{W2}P_{W2}$	Period of secondary swell waves	Whole seconds; encoded 99 where applicable (see under element 32)
58	103- 104	$H_{\rm W2}H_{\rm W2}$	Height of secondary swell waves	Half-meter values (see under element 33)
59	105	Ci	Concentration or arrangement of sea ice	WMO code table 0639
60	106	S _i	Stage of development	WMO code table 3739
61	107	b _i	Ice of land origin	WMO code table 0439
62	108	D _i	True bearing of principal ice edge	WMO code table 0739
63	109	Zi	Present ice situation and trend of conditions over the preceding three hours	WMO code table 5239
64	110		FM code version	0 - previous to FM 24-V 1 - FM 24-V 2 - FM 24-VI Ext. 3 - FM 13-VII 4 - FM 13-VIII 5 - FM 13-VIII Ext. 6 - FM 13-IX 7 - FM 13-IX Ext. 8 - FM 13-XI 9 - FM 13-XI A - FM 13-XII Ext. B - FM 13-XII Ext. B - FM 13-XIV Ext. [Note: etc. for future configurations]
65	111		IMMT version	 0 – IMMT version just prior to version number being included 1 – IMMT-1 (in effect from 2 Nov. 1994) 2 – IMMT-2 (in effect from Jan. 2003)

SOT-8 / Doc. 10.2.1

<u>Element</u> Number	<u>Character</u> Number	<u>Code</u>	<u>Element</u>	Coding procedure
				3 – IMMT-3 (in effect from Jan. 2007) 4 – IMMT-4 (in effect from Jan. 2011) 5 – IMMT-5 (in effect from June 2012) [Note: etc. for future configurations]
66	112	Q1	Quality control indicator for (h)	 0 - no QC has been performed on this element 1 - QC performed; element appears correct 2 - QC performed; element appears inconsistent with other elements 3 - QC performed; element appears doubtful 4 - QC performed; element appears doubtful 4 - QC performed; element appears doubtful 5 - QC performed; element changed (possibly to missing) as a result 6 - QC flag amended: element flagged by CM as correct (1), but according to MQCS still appears suspect (2-4) or missing (9) 7 - QC flag amended: element flagged by CM as changed (5), but according to MQCS still appears suspect (2-4) 8 - [reserved] 9 - element is missing
67	113	Q ₂	QC indicator for (VV)	- idem -
68	114	Q ₃	QC indicator for (N and clouds: elements 12, 24–27)	- idem -
69	115	Q ₄	QC indicator for (dd)	- idem -
70	116	Q ₅	QC indicator for (ff)	- idem -
71	117	Q ₆	QC indicator for (s _n and TTT)	- idem -
72	118	Q ₇	QC indicator for $(s_t and T_d T_d T_d)$	- idem -
73	119	Q ₈	QC indicator for (PPPP)	- idem -
74	120	Q ₉	QC indicator for (weather: ww, W _{1,} W ₂ ; elements 21–23)	- idem -
75	121	Q ₁₀	QC indicator for $(s_n and T_W T_W T_W)$	- idem -
76	122	Q ₁₁	QC indicator for (P _w P _w)	- idem -
77	123	Q ₁₂	QC indicator for (H_WH_W)	- idem -
78	124	Q ₁₃	QC indicator for (swell: elements 34– 36, 56–58)	- idem -
79	125	Q ₁₄	QC indicator for (i _R RRRt _R)	- idem -
80	126	Q ₁₅	QC indicator for (a)	- idem -
81	127	Q ₁₆	QC indicator for (ppp)	- idem -

SOT-8 / Doc. 10.2.1

<u>Element</u> <u>Number</u>	<u>Character</u> <u>Number</u>	<u>Code</u>	<u>Element</u>	Coding procedure
82	128	Q ₁₇	QC indicator for (D_s)	- idem -
83	129	Q ₁₈	QC indicator for (v _s)	- idem -
84	130	Q ₁₉	QC indicator for $(s_w and T_b T_b T_b)$	- idem -
85	131	Q ₂₀	QC indicator for ships' position	- idem -
86	132	Q ₂₁	Version identification for Minimum Quality Control Standard (MQCS)	1 – MQCS-1 (Original version, Feb. 1989): CMM-X 2 – MQCS-2 (Version 2, March 1997) CMM-XII 3 – MQCS-3 (Version 3, April 2000) SGMC-VIII 4 – MQCS-4 (Version 4, June 2001): JCOMM-I 5 – MQCS-5 (Version 5, July 2004): ETMC-I 6 – MQCS-6 (Version 6, November 2009)) JCOMM-III 7 – MQCS-7 (Version 7, in effect from June 2012) JCOMM-IV [Note: etc. for future configurations]
87	133- 135	A HDG	additional Requirements Ship's heading; the direction to which the bow is pointing, referenced to true North	for VOSCIim: (001-360); e.g. 360 = North 090 = East
88	136- 138	COG	Ship's ground course; the direction the vessel actually moves over the fixed earth and referenced to True North	(000-360); e.g. 360 = North 000 = No Movement 090 = East
89	139- 140	SOG	Ship's ground speed; the speed the vessel actually moves over the fixed earth	(00-99); Round to nearest whole knot
90	141- 142	SLL	Maximum height in meters of deck cargo above Summer maximum load line (reference level)	(00-99); Round to nearest whole meter
91	143	SL	Sign of departure of reference level	0 = positive or zero, 1 = negative
92	144- 145	hh	Departure of reference level (Summer maximum load line) from actual sea level	Difference to the nearest whole meter (00-99) between the Summer maximum load line and the sea level (water line); positive when the Summer maximum load line is above the level of the sea and negative if below the water line
93	146- 148	RWD	Relative wind direction in degrees off the bow	Relative wind direction; e.g. 000 = no apparent relative wind speed (calm conditions on deck). Reported direction for relative wind = 001-360 degrees in a clockwise direction off the bow of the ship. When directly on the bow.

SOT-8 / Doc. 10.2.1

<u>Element</u> Number	<u>Character</u> Number	<u>Code</u>	<u>Element</u>	Coding procedure
<u></u>				RWD = 360.
94	149- 151	RWS	Relative wind speed indicated by i _w (knots or m s ⁻¹)	Reported in either whole knots or whole meters per second (e.g. 010 knots or 005 m s ⁻¹). Units established by i_w (element 14) [Note: RWS is a 3-character field to store values of RWS larger than ff (if i_w indicates knots), e.g. ff=98 knots, RWS=101 knots; see
95	152	Q ₂₂	QC indicator for	[Note: coding as for element 66]
96	153	Q ₂₃	(HDG) QC indicator for (COG)	– idem –
97	154	Q ₂₄	QC indicator for (SOG)	– idem –
98	155	Q ₂₅	QC indicator for (SLL)	– idem –
	156		blank	[Note: Formerly (usage now discontinued): QC indicator for (s_L) ; now Q_{27} serves as the indicator for both s_L and bh_L
99	157	Q ₂₇	QC indicator for (sL	– idem –
100	158	Q ₂₈	QC indicator for (RWD)	– idem –
101	159	Q ₂₉	QC indicator for (RWS)	– idem –
102	160-163	RH	Relative humidity	Tenths of Percentage
103	164	RHi	Relative humidity indicator	 0 - Relative humidity in tenths of Percentage, measured and originally reported 1 - Relative humidity in whole Percentage, measured and originally reported [Note: 2 - Reserved] 3 - Relative humidity in tenths of Percentage, computed 4 - Relative humidity in whole Percentage, computed
104	165	AWSi	AWS indicator	0 – No Automated Weather Station (AWS) 1 – AWS 2 – AWS plus Manual Observation
105	166-172	IMOno	IMO number	Seven digits (or left justified with right-blank fill)

APPENDIX D

MINIMUM QUALITY CONTROL STANDARD (MQCS)

MQCS-7 (Version 7)

Notes:

- (a) See the specifications for setting quality control Indicators Q_1 to Q_{29} at the end of this Annex
- (b) Δ = space (ASCII 32)

<u>Element</u>	<u>Error</u>	Action	
1	i- / 2	Correct manually otherwise 3	
2	$I_{T} \neq S = S, \Delta$	Correct manually otherwise reject	
2	AAAA \neq valiu year MM $\neq 01$ 12	Correct manually otherwise reject	
3	$VV \leftarrow valid day of month$	Correct manually otherwise reject	
4	$f f \neq valid day of month QQ \neq QQ$	Correct manually otherwise reject	
5	$GG \neq 00 - 23$	Correct manually one function $O_{11} = 4$	
0	$QC \neq 1, 3, 5, 7$	Correct manually and $Q_{20} = 5$, otherwise $Q_{20} = 4$	
7	$Q_c - \Delta$	$Q_{20} = 2$	
'	$L_a L_a \neq 000-900$	$O_{12} = 2$	
8	$L_{a}L_{a}L_{a} - \Delta\Delta\Delta$	$Q_{20} = 2$	
0	$L_0 L_0 L_0 \neq 0000 = 1000$	$O_{00} = 2$	
	$ a a a = a a a a = \Delta\Delta\Delta(\Delta)$	$\alpha_{20} = 2$	
Time sequen	<u>ce checks</u>		
	Change in latitude > 0.7°/hr	Correct manually otherwise $Q_{20} = 3$	
	Change in longitude > 0.7 °/hr	Correct manually otherwise $Q_{20} = 3$	
	when lat. 00-39.9		
	Change in longitude > 1.0 ^v /hr	Correct manually otherwise $Q_{20} = 3$	
	when lat. 40-49.9		
	Change in longitude > 1.4 7/hr	Correct manually otherwise $Q_{20} = 3$	
	When lat. 50-59.9 Change in longitude > 2.0 °/hr	Correct manually otherwise 0 - 2	
	when lat 60.60.0	Correct manually otherwise $Q_{20} = 3$	
	Change in longitude > 2.7 °/br	Correct manually otherwise $\Omega_{co} = 3$	
	when lat 70-79 9	Correct manually otherwise Q20 = 5	
9	Indicator $\neq 0.3$ A	Correct manually, otherwise A	
10	$h \neq 0.9$	Correct manually and $Q_1 = 5$, otherwise $Q_1 = 4$	
	$h = \Delta$	$Q_1 = 9$	
11	VV ≠ 90 - 99	Correct manually and $Q_2 = 5$, otherwise $Q_2 = 4$	
	$VV = \Delta \Delta$	Q ₂ = 9	
12	N ≠ 0-9, Δ	Correct manually and $Q_3 = 5$, otherwise $Q_3 = 4$	
	$N < N_{h}$	Correct manually and $Q_3 = 5$, otherwise $Q_3 = 2$	
13	dd ≠ 00-36, 99	Correct manually and $Q_4 = 5$, otherwise $Q_4 = 4$	
	$dd = \Delta \Delta$	$Q_4 = 9$	
	dd versus ff		
	$dd = 00, ff \neq 00$	Correct manually and Q_4 or $Q_5 = 5$ otherwise	
		$Q_4 = Q_5 = 2$	
	$aa \neq 00, tt = 00$	Correct manually and Q_4 or $Q_5 = 5$ otherwise	
14	i ∠0 1 3 1	$Q_4 = Q_5 = 2$	
14	1 _W ≠ 0, 1, 3, 4 ff > 80 knots	Correct manually, otherwise $Q_5 = Q_{29} = 4$	
15	$ff = \Lambda \Lambda$	Our equilibrium of the transformation of transformation of tr	
16	$s_{r} \neq 0$ 1	$C_{0} = 0$	
17	$TTT = \Lambda \Lambda \Lambda$	$Q_{0} = 9$	
17	If $-25 > TTT > 40$ then	$\alpha_0 = 5$	
	when Lat. < 45.0		
	TTT < -25	$Q_6 = 4$	
	TTT > 40	$Q_6 = 3$	
	when Lat. ≥ 45.0		
	TTT < -25	Q ₆ = 3	
	TTT > 40	$Q_6 = 4$	
TTT versus humiditu parameters			
	TTT < WB (wet bulb)	Correct manually and $Q_6 = 5$ otherwise $Q_{6} = Q_{40} = 2$	
L		$\mathbf{x}_{0} = \mathbf{x}_{0} $	

SOT-8 / Doc. 10.2.1

<u>Element</u>	Error	Action
	TTT < DP (dew point)	Correct manually and $Q_6 = Q_7 = 5$, otherwise $Q_6 = Q_7 = 2$
18	s _t ≠ 0, 1, 2, 5, 6, 7	$Q_0 = Q_7 = 2$ Correct manually, otherwise $Q_7 = 4$
19	DP > WB	Correct manually and $Q_7 = 5$, otherwise $Q_7 = Q_{19} = 2$
	DP > TTT	Correct manually and $Q_7 = 5$, otherwise $Q_7 = Q_6 = 2$
	$WB = DP = \Delta\Delta\Delta$	$Q_7 = Q_{19} = 9$
20	930 > PPPP > 1050 nPa 870 > PPPP > 1070 hPa	Correct manually and $Q_8 = 5$, otherwise $Q_8 = 3$
	$PPPP = \Delta\Delta\Delta\Delta$	$Q_8 = 9$
21	ww = 22-24, 26, 36-39, 48, 49, 56,	Correct manually and $Q_9 = 5$, otherwise $Q_9 = 4$
	57, 66-79, 83-88	
	93-94 and latitude x20°	Correct manually and $Q_9 = 5$, otherwise $Q_9 = 3$
	if $i_{v} = 7$	
	$w_a w_a = 24 - 25, 35, 47-48, 54-56, 64-68,$	Correct manually and $Q_9 = 5$, otherwise $Q_9 = 4$
	70-78, 85-87	
	and latitude <20°	
22, 23	W_1 or $W_2 = 7$ and latitude <20°	Correct manually and $Q_9 = 5$, otherwise $Q_9 = 4$
	$W_1 < W_2$ $W_1 = W_2 = ww = \Lambda \Lambda \Lambda$	$\Omega_0 = 9$
24-27	$N = 0$, and $N_h C_L C_M C_H \neq 0000$	Correct manually and $Q_3 = 5$, otherwise $Q_3 = 2$
	$N = \Delta$, and $N_h C_L C_M C_H \neq \Delta \Delta \Delta \Delta$	Correct manually and $Q_3 = 5$, otherwise $Q_3 = 2$
	$N = 9$, and not ($N_h = 9$ and $C_L C_M C_H$	Correct manually and $Q_3 = 5$, otherwise $Q_3 = 2$
	$\neq \Delta\Delta\Delta$	0 0
28	$N = \Delta$, and $N_h C_L C_M C_H = \Delta \Delta \Delta \Delta$ s $\neq 0.1$	$Q_3 = 9$ Correct manually otherwise $\Omega_{40} = 4$
29	TwTwTw r = ΔΔΔ	$Q_{10} = 9$
	if $-2.0 > T_w T_w T_w > 37.0$ then	
	when Lat. < 45.0	
	$ _{W} _{W} _{W} < -2.0$	Control manually and $Q_{10} = 5$, otherwise $Q_{10} = 4$
	when l at ≥ 45.0	Control manually and $Q_{10} = 5$, otherwise $Q_{10} = 5$
	$T_W T_W T_W < -2.0$	Control manually and $Q_{10} = 5$, otherwise $Q_{10} = 3$
	$T_W T_W T_W > 37.0$	Control manually and $Q_{10} = 5$, otherwise $Q_{10} = 4$
30	Indicator \neq 0-7, Δ	Correct manually, otherwise Δ
31	Indicator \neq 0-9, Δ	Correct manually, otherwise Δ
52	$P_{W}P_{W} \ge 30$ and $\neq 99$	$Q_{11} = 3$ $Q_{11} = 4$
	$P_W P_W = \Delta \Delta$	$Q_{11} = 9$
33	35< HwHw < 50	$Q_{12} = 3$
	$H_WH_W \ge 50$	$Q_{12} = 4$
34	$\Pi_{W}\Pi_{W} = \Delta \Delta$	$Q_{12} = 9$ Correct manually and $Q_{12} = 5$ otherwise $Q_{12} = 4$
	swell ₁ = swell ₂ = Δ	$Q_{13} = 9$
35	$25 < P_{w1}P_{w1} < 30$	$Q_{13} = 3$
	$P_{w1}P_{w1} \ge 30 \text{ and } \neq 99$	$Q_{13} = 4$
36	$35 < H_{w1}H_{w1} < 50$	$Q_{13} = 3$ $Q_{13} = 4$
37	$I_{w1}I_{w1} \ge 50$ $I_{s} \neq 1-5$	$Q_{13} = 4$ Correct manually, otherwise Δ
38	$E_s E_s \neq 00-99, \qquad \Box \Delta \Delta$	Correct manually, otherwise $\Delta\Delta$
39	R _s ≠ 0-4, Δ	Correct manually, otherwise Δ
40	Source ≠ 0-6	Correct manually, otherwise Δ
41	Platform ≠ 0-9	Correct manually, otherwise Δ
42	ואט כמוו sign No country code	insert manually, mandatory entry
44	No Quality Control	noon manually
45	Q ≠ 0-6, 9	Correct manually, otherwise Δ
46	i _x ≠ 1-7	Correct manually, otherwise Δ
47	$i_R = 0.2$ and RRR = 000, $\Box \Delta \Delta \Delta$	Correct manually, otherwise $Q_{14} = 4$
	$I_{R} = 3 \text{ and } KKK \neq \Delta \Delta \Delta$	Correct manually, otherwise $Q_{14} = 2$
	$i_R = 4$ and $RR \neq \Delta\Delta\Delta$ $i_R \neq 0-4$	Correct manually, otherwise $Q_{14} = 2$
48	RRR ≠ 001-999 and iR = 1, 2	Correct manually and $Q_{14} = 5$, otherwise $Q_{14} = 2$
49	t _R ≠ 0-9, Δ	Correct manually and $Q_{14} = 5$, otherwise $Q_{14} = 4$
50	$s_w \neq 0, 1, 2, 5, 6, 7$	Correct manually, otherwise $Q_{19} = 4$
51	VVB < DP WB = $\Delta \Delta \Delta$	Correct manually and $Q_{19} = 5$, otherwise $Q_{19}=Q_7=2$

<u>Element</u>	<u>Error</u>	<u>Action</u>
	WB > TTT	Correct manually and $Q_{19}=5$, otherwise $Q_{19}=Q_6=2$
52	a ≠ 0-8	Correct manually and $Q_{15} = 5$, otherwise $Q_{15} = 4$
	$a = 4$ and $ppp \neq 000$	Correct manually and Q_{15} or $Q_{16} = 5$, otherwise $Q_{15}=Q_{16}=2$
	a =1,2,3,6,7,8 and ppp=000	Correct manually and Q_{15} or $Q_{16} = 5$, otherwise $Q_{15}=Q_{16} = 2$
	a = Δ	$Q_{15} = 9$
53	250 ≥ ppp > 150	Correct manually and $Q_{16} = 5$, otherwise $Q_{16} = 3$
	ppp > 250	Correct manually and $Q_{16} = 5$ otherwise $Q_{16} = 4$
	$ppp = \Delta \Delta \Delta$	$Q_{16} = 9$
54	D _s ≠ 0-9	Correct manually and $Q_{17} = 5$, otherwise $Q_{17} = 4$
	$D_s = \Delta$	$Q_{17} = 9$
55	$V_s \neq 0.9$	Correct manually and $Q_{18} = 5$, otherwise $Q_{18} = 4$
56	$V_s = \Delta$	$Q_{18} = 9$
50	$d_{w2}d_{w2} \neq 00-36, 99, \Delta\Delta$	Correct manually and $Q_{13} = 5$, otherwise $Q_{13} = 4$
57	$20 < P_{W2}P_{W2} < 30$	$Q_{13} = 3$
59	$F_{W2}F_{W2} \le 50$ and $\neq 99$ 25 \neq $H_{1}H_{2} \le 50$	$Q_{13} = 4$ $Q_{12} = 3$
50	$H_{10}H_{10} \ge 50$	$Q_{13} = 3$ $Q_{42} = 4$
59	$c \neq 0.9$	Correct manually otherwise Λ
60	S; ≠ 0-9, A	Correct manually, otherwise Λ
61	$b_1 \neq 0.9$, Δ	Correct manually, otherwise A
62	$D_{i} \neq 0.9, \Delta$	Correct manually, otherwise Λ
63	$D_1 \neq 0.3, \Delta$ $z_1 \neq 0.9, \Lambda$	Correct manually, otherwise Λ
64	$Z_1 \neq 0^{-3}, \Delta$	Correct manually, otherwise A
65	version $\neq 0.4$ A	Correct manually, otherwise A
00	Version ≠ 0-4, Δ	
86	Minimum Quality Control Standard (MQCS) version identification	1= MQCS-1 (Original version, Feb. 1989) CMM-X 2= MQCS-2 (Version 2, March 1997) CMM-XII 3= MQCS-3 (Version 3, April 2000) SGMC-VIII 4= MQCS-4 (Version 4, June 2001) JCOMM-I 5= MQCS-5 (Version 5, July 2004) ETMC-I 6 = MQCS-6 (Version 6, November 2009) JCOMM-III) 7 = MQCS-7 (Version 7, in effect from June 2012)
87	HDG ≠ 001-360	Correct manually and $Q_{22} = 5$, otherwise $Q_{22} = 4$
	$HDG = \Delta\Delta\Delta$	Q ₂₂ = 9
88	COG ≠ 000-360 COG = ∆∆∆	Correct manually and $Q_{23} = 5$, otherwise $Q_{23} = 4$
89	$SOG \neq 00 - 99$	$Q_{23} = 5$ Correct manually and $Q_{24} = 5$ otherwise $Q_{24} = 4$
00	SOG = AA	$Q_{24} = 9$
	SOG > 33	$Q_{24} = 0$ Correct manually and $Q_{24} = 5$, otherwise $Q_{24} = 3$
90	SLL ≠ 00-99	Correct manually and $Q_{25} = 5$, otherwise $Q_{25} = 4$
	SLL = $\Delta\Delta$	$Q_{25} = 9$
	SLL > 40	Correct manually and $Q_{25} = 5$, otherwise $Q_{25} = 3$
91	s _L ≠ 0,1	Correct manually and $Q_{27} = 5$, otherwise $Q_{27} = 4$
92	hh ≠ 00 – 99	Correct manually and $Q_{27} = 5$, otherwise $Q_{27} = 4$
	hh = $\Delta\Delta$	Q ₂₇ = 9
	hh >= 13	Correct manually and $Q_{27} = 5$, otherwise $Q_{27} = 3$
	hh < -01	Correct manually and $Q_{27} = 5$, otherwise $Q_{27} = 4$
93	RWD ≠ 000 - 360, 999	Correct manually and $Q_{28} = 5$, otherwise $Q_{28} = 4$
	$RWD = \Delta\Delta\Delta$	$Q_{28} = 9$
94	RWS ≠ 000 - 999	Correct manually and $Q_{29} = 5$, otherwise $Q_{29} = 4$
	$RWS = \Delta\Delta\Delta$	Q ₂₈ = 9
	RWS > 110 kts	Correct manually and $Q_{29} = 5$, otherwise $Q_{29} = 3$
RWD versus	RWS	
	RWD = 000, RWS ≠ 000	Correct manually and Q_{28} or $Q_{29} = 5$, otherwise
	RWD ≠ 000, RWS = 000	$Q_{28} = Q_{29} = 2$ Correct manually and Q_{28} or $Q_{29} = 5$, otherwise
		$Q_{28} = Q_{29} = 2$
1		

<u>Element</u>	<u>Error</u> <u>Action</u>
Specification	as for setting quality control Indicators Q_1 to Q_{29}
0	No quality control (QC) has been performed on this element
1	QC has been performed; element appears to be correct
2	QC has been performed; element appears to be inconsistent with other elements
3	QC has been performed; element appears to be doubtful
4	QC has been performed; element appears to be erroneous
5	The value has been changed as a result of QC
6	The original flag is set "1" (correct) and the value will be classified by MQCS as inconsistent, dubious, erroneous or missing
7	The original flag is set "5" (amended) and the value will be classified by MQCS as inconsistent, dubious, erroneous or missing
8	Reserve
9	The value of the element is missing