Specification for Sea Surface Temperature (DRAFT) Sea-surface temperature (SST) is a vital component of the climate system as it exerts a major influence on the exchanges of energy, momentum and gases between the ocean and atmosphere. These heat exchanges are a main driver of the global weather systems. The spatial patterns of SST reveal the structure of the underlying ocean dynamics. SST is a complex quantity as it not only controls fluxes, but also responds to turbulent and radiative exchanges at the surface. The value of the SST depends therefore on where and how the measurement is taken. In situ measurements comprise a database that currently extends back to the late 18th century, with the prospect of additional recovered and digitized historical measurements being added. Over this time period, the types of available measurements and their areal coverage are changing significantly. In the past 30 years, near-global sampling of SST has become available on daily to weekly basis due to the advent of infrared radiometers on polar-orbiting and geosynchronous satellites and of microwave radiometers on polar-orbiting satellites. These in situ and satellite-based measurements are complementary, each type providing supporting information of use to the other. For climate applications, the accuracy requirements set by GCOS are very stringent, being an absolute accuracy of 0.1K, with stability at the level of 0.03K/decade, both over space scales of ~100-1000 km. The Group for High Resolution SST (GHRSST; www.ghrsst.org) is an international consortium of scientists and operational practitioners focused on SST derivation and applications. It helps coordinate research into and applications of SST measurements from both satellite and in situ sources. Efforts are underway to recover more historical data and incorporate them into the EOV. The provision of metadata describing the measurement approach and, where relevant, conditions under which the measurements were taken are an important component of all data sets. The long-term stewardship of all datasets is critical. | EOV Information | | |---------------------------|---| | Name of EOV | Sea-surface temperature (SST) | | Sub-Variables | Skin SST, subskin SST, foundation SST, Temperature at stated depth. The legacy "bulk SST" variable refers to the subsurface temperature at (usually unspecified_depth in the range from 0.5 m to a few meters. See https://www.ghrsst.org/science-and-applications/sst-definitions/ for further details. | | Derived Products | Momentum, sensible and latent turbulent heat fluxes to the atmosphere. Height-adjusted version of other variables (e.g. wind speed, air temperature and humidity. Electromagnetic emission (long-wave fluxes). Mixed layer heat content. | | Supporting variables | Physical retrievals of top-of-atmosphere radiances, Bayesian cloud masking, and conversion from skin SST to temperature at depth require atmospheric state and wind data (e.g. from NWP models and reanalyses). To make an appropriate use of in situ data, depth of measurement is needed. | | Contact/Lead
Expert(s) | Group for High Resolution Sea Surface Temperature (GHRSST). CEOS SST Virtual Constellation JCOMM DBCP and SOT | ## **Draft Template for Essential Ocean Variables** | Requirements Settings | | | | | | | |---|--|--|-------------------------|---------------------------------|--------------------|-----------------------------------| | Responsible
GOOS Panel | OOPC | | | | | | | Reporting
Mechanism(s) | Requirements collated by CEOS SST-VC and GHRSST based on documents, reports and web pages, and user interactions. Publications in the reviewed literature. | | | | | | | Readiness Level ¹ | Mature | | | | | | | Societal Benefit
Area(s)
Societal drivers | monitoring | Improved weather and ocean forecasting; operational oceanography, monitoring and research of climate variability and change; fisheries management; coral reef monitoring; coastal management decision support. | | | | | | Scientific
Application(s) | Oceanography, operational oceanography, weather prediction, ocean state, air-sea interactions, climate research | | | | | | | Phenomena to capture. | Diurnal
variability | Mesoscale
& sub-
mesoscale
ocean
variability | Seasonal
variability | Inter-
annual
variability | ENSO | Climate
variability | | Temporal Scales of the phenomena | Minutes
to a day | Days to months | Weeks to
year | Months to years | Weeks to
months | Years to
decades
and longer | | Spatial scales of phenomena | <1-100km | <1-500km | 100-
1000km | 100-
1000km | 100-
10000km | 100-
10000km | | Magnitudes/
range of the
signal, thresholds
to capture | 0.01 to 7K | 0.01 to 5K | 0.01 to 5K | 0.01 to 3K | 0.01 to
5K | 0.01 to
0.5K | Figure 1: Scales of phenomena related to sea-surface temperature. Figure 2: Insert map to illustrate regional variations in requirements (optional). | Observation De | ployment & Maintena | ance – I | | | |--|---|--|---|--| | Observing
Elements | Infrared satellite radiometers | Microwave satellite radiometers | Infrared ship radiometers | Ship thermometers | | Phenomena addressed | Skin SST | ~Subskin SST | Skin SST | SST _{depth} (possibly,
unspecified depth) | | Readiness Level | Mature | Mature | Mature | Mature | | Spatial sampling | ~1km; global
coverage | Typically on a 25km grid (but not independent of neighbours) | 0.01 – 1km along
ship tracks | 0.01 – 100km along
ship tracks | | Temporal sampling | ~15 Minutes
(geostationary) to
~12 hr (Polar orbiter)
Latitude dependent | ~12 hr. Latitude
dependent | Minutes | Minutes to hours | | Special
Characteristics/
Contributions | On polar-orbiting and geostationary satellites, sampling of diurnal variability by polar orbiters determined by orbit. SST not retrieved under cloud. | On polar-orbiting satellites; sampling of diurnal variability determined by orbit. SST not retrieved under precipitating cloud or close to coasts. | Mounted on selected ships | Concentrated in shipping lanes. Elsewhere from mainly research ships. Provides a centennial-scale record and the means to link satellite observations to it. | | Relevant
measured
variables | Top-of-atmosphere radiances | Top-of-atmosphere radiances | Sea-surface
emission in the
infrared | T at stated depth | | Sensor(s)/
Technique | Infrared multi-
spectral radiometers.
Cloud screening &
atmospheric
correction algorithms
to derive skin SST. | Microwave multi-
spectral radiometers.
Various algorithms to
derive subskin SST, and
other geophysical
variables. | Measurements of incident sky radiation also needed to correct for reflected sky radiance. | Contact thermometers in a range of mounting configurations; variety of traditional methods: buckets, engine room intake, hull thermometers. | | Accuracy/
Uncertainty
estimate
(units). * | 0.2-0.5K rms | 0.5K rms | 0.1K rms | 0.01-0.75K rms | ^{*} There are components that have different levels of correlation in space and time, so aggregating these numbers is not straightforward. | Observation Depl | oyment & Maintena | nce – II | | | |--|---|---|---|--| | Observing
Elements | Moorings | Drifters | AUVs (gliders) and
Argo profilers | Marine mammals
and Sea-birds | | Phenomena addressed | SST _{depth} (possibly,
unspecified depth) | SST _{depth} (possibly,
unspecified depth) | SST_{depth} | SST _{depth} (possibly,
unspecified depth) | | Readiness Level | Mature | Mature | Mature | Mature | | Spatial sampling | Point measurement;
variable spatial
resolution,
concentrated in
tropics and coastal
areas | Point measurement;
Variable resolution
along drift track,
extensive coverage. | Point measurement;
Variable resolution
along track. (SST
from Argo limited to
where water depths
>2000m) | Point measurement;
Variable resolution. | | Temporal sampling | Minutes to hours | Minutes to hours | Every ten days
(Argo) and variable
(gliders) | Variable | | Special
Characteristics/
Contributions | Decadal data in the tropics. Provides stability reference in the tropical Pacific for satellite data; this is threatened by current servicing arrangements. | Variable temporal & spatial distributions. Provides link between satellite data and longer historical record. Currently most numerous in situ measurements. | Variable temporal & spatial distributions | Variable temporal & spatial distributions | | Relevant
measured
variables | T at stated depth | | Sensor(s)/
Technique | Contact
thermometers, at
depths of 0.1 to a
few m | Contact
thermometers, at
~0.2m depth. | Contact thermometers, at ~5m depth. Some take measurements to surface. | Contact thermometers on head of mammals and legs of large sea- birds (e.g. albatrosses). | | Accuracy/
Uncertainty
estimate (units).* | 0.01-0.5K rms | 0.1-0.25K | 0.01K or better | 0.01K or better to
0.1K | ^{*} There are components that have different levels of correlation in space and time, so aggregating these numbers is not straightforward. | Future observing Elements | | | | | | | |--|--|-------------------------------------|--|--|--|--| | Observing Elements | Next
Generation
Drifters | Infrared
Radiometers
on UAVs | | | | | | Readiness Level 1 | Pilot | Pilot | | | | | | Spatial sampling | Variable | Continuous
along flight
path | | | | | | Temporal sampling | Minutes to hours | Continuous
along flight
path | | | | | | Special Characteristics/
Contributions | Improved calibration of thermometers | Light-weight imaging | | | | | | Estimated time when part of the observing system | Currently
being
deployed | Currently deployed. | | | | | | Relevant measured parameter(s) | T _{depth} | Skin SST | | | | | | Sensor(s)/Technique | Contact
thermom-
eters, at
~0.2m depth. | Infrared radiometers, some imaging. | | | | | | Accuracy/Uncertainty estimate (units). | 0.05K | 0.1K or
better | | | | | Figure 3a. Measurement scales of the component networks. The scales of individual measurements are indicated by the positions of the bottom-left of each box, and the largest scales sampled by a network of sensors by the top right. Figure 3b. Time-series of monthly measurement counts for components of the in situ network. VOS means Voluntary Observing Ships; GTMBA the Global Tropical Moored Buoy Array; Radiometer indicates those mounted on ships. Note year-to-year variations, especially the recent drop in numbers from the GTMBA and drifters. (NB, the numbers of Argo and Radiometer measurements are given on the stretched scale on the right-hand axis.) Figure 4a. Schematic of the SST observing system. Infrared radiometers on polar-orbiting satellites have good spatial resolution in cloud-free conditions, and some have very good accuracy; those on geostationary satellites have high temporal sampling (but again restricted to cloud-free conditions). Microwave radiometers on polar-orbiting satellites provide data though clouds, except those with heavy precipitation, but have poorer spatial resolution and cannot retrieve SSTs close to land. In situ data, from drifting, profiling and moored buoys, and AUVs, are generally not limited by clouds and rain, but have comparatively irregular and spatial sampling. All components of the satellite and in situ networks contribute the SST EOV. Figure 4b: Maps indicating the coverage of the global oceans from geostationary satellites (top left; daily measurements; courtesy Dr E. Maturi, NOAA), from a polar orbiter (top right; AMSR2 microwave radiometer, descending passes for one day, from http://images.remss.com/amsr/amsr2_data_daily.html), in situ measurements (bottom left; from http://www.star.nesdis.noaa.gov/sod/sst/iquam/v2/ for the month of May, 2014). Outlier -135 The Ocean Observations Panel for Climate is sponsored by the Global Ocean Observing System the Global Climate Observing System and the World Climate Research Program. OOPC provides advice on scientific requirements to the Joint Commission for Oceanography and Marine Meteorology. Drifter Quam2,2014.05 -45 | Data & Information Creation | | | | | | | | |-----------------------------------|--|--|--|---|---|---|--| | | Swath
satellite
only
(L2) | Gridded
satellite
SST
Product
(L3) | Gridded,
gap-free
satellite
SST
Product
(L4) | Native in
situ SST
Product | Gridded in
situ SST
Product
(L3) | Gridded,
gap-free
in situ
SST
Product
(L4) | Gridded,
gap-free
merged
Satellite/
In Situ SST
(L4) | | Readiness
Level ¹ | Mature | Oversight & Coordination | GHRSST | GHRSST | GHRSST | JCOMM
ICOADS | UK Met
Office,
NODC,
NCDC,
ICOADS | NODC,
NCDC,
JMA
(COBE),
NOC | GHRSST,
UK Met
Office,
NCDC,
JMA
(COBE2),
Kaplan
(LDEO) | | Data Centre/
repository | NOAA
NODC,
NASA
PO.DAAC,
CEDA | NOAA
NODC,
NASA
PO.DAAC | NOAA
NODC,
NASA
PO.DAAC | JCOMM,
NODC,
ICOADS,
NCAR | UK Met
Office,
NODC,
NCC,
ICOADS,
NCAR | NODC,
NCDC,
Tokyo
Climate
Centre | NODC,
NCDC,
UK Met
Office,
Tokyo
Climate
Centre | | Data Stream
delivery and
QC | QC by
data
providers.
NASA JPL
PO-DAAC
& NODC | QC by
data
providers.
NASA JPL
PO-DAAC
& NODC | QC by
data
providers.
NASA JPL
PO-DAAC
& NODC | QC by data providers and ICOADS, & NODC | QC by data
providers
and NODC,
NCDC | QC by data providers and NODC, NCDC, ICOADS | QC by data
providers.
NASA JPL
PO-DAAC
& NODC | | Derived
Products | Sensible and latent turbulent heat and momentum fluxes to the atmosphere. Electromagnetic emission (long-wave fluxes). Upper ocean heat content. Atmospheric reanalysis, ocean reanalysis, coupled reanalysis, weather to decadal forecasts. Height adjusted winds, air temperature and humidity. Satellite-derived air temperature and humidity products. Atmospheric simulations of recent climate. Reconstruction of ocean surface current from passive microwave SST fields. | | | | | | | | Links & Reference | s | | |--|--|---| | Links* (especially regarding Background & Justification) | www.ghrsst.org
www.ceos.org/sst | | | Links for
Contributing
Networks | www.ghrsst.org www.ceos.org/sst www.jcommops.org http://www.remss.com/ http://gcom-w1.jaxa.jp/index.html http://podaac.jpl.nasa.gov http://icoads.noaa.gov/ | http://www.ncdc.noaa.gov/ http://www.nodc.noaa.gov/ http://www.bodc.ac.uk/ http://www.myocean.eu/ http://www.esa-sst-cci.org/ http://www.ceda.ac.uk/ | | Data References | and Information for Society (Vol. 2), Venice, I
D.E. & Stammer, D., Eds., ESA Publication WP
Kennedy, J. J. (2014), A review of uncertainty in in
temperature, Reviews of Geophysics, 52, 1–3.
Merchant, C. J., and Coauthors, 2012: A twenty-ye
temperature for climate from Along Track Sc
Research, 117, C12013, doi: 10.1029/2012JC0
Rayner, N. A., and Coauthors, 2010: Evaluating cl
historical SST observations, Proceedings of C | cean Data Assimilation Experiment High- oject. Bulletin of the American Meteorological d Challenges for the Modern Sea Surface s of OceanObs'09: Sustained Ocean Observations staly, 21-25 September 2009, Hall, J., Harrison, PP-306, doi: 10.5270/OceanObs09.cwp.24 a situ measurements and data sets of sea surface 2, doi: 10.1002/2013RG000434. ear independent record of sea surface sanning Radiometers, Journal of Geophysical 208400. imate variability and change from modern and OceanObs'09: Sustained Ocean Observations and 21-25 September 2009, Hall, J., Harrison, D.E. & | ¹ Framework Processes and Readiness Levels (from the Framework for Ocean Observing [FOO]). | Highest | | | | | | | | |---------------------|--|---|---|--|--|--|--| | Readiness
Level | Requirements | Observations | Data & Information | | | | | | Mature | Measurement validated
through peer review,
implemented at regional
and/or global scales and
capable of being sustained. | Following validation of observation
via peer review of specifications
and documentation, system is in
place globally and indefinitely. | Validation of data policy
via routinely available and
relevant information
products. | | | | | | Pilot | Measurement and
sampling strategy verified
at sea. Autonomous
deployment in an
operational environment. | Establishment of international governance mechanism, international commitments, and sustaining components. Maintenance and servicing logistics negotiated. | Data management
Practices determined and
tested for quality and
accuracy throughout the
system. Creation of draft
data policy. | | | | | | Concept | Need for information
identified and
characteristics
determined. Feasibility
study of measurement
strategy and technology. | The system is articulated, capability is documented and tested. Proof of concept validated by a basin scale feasibility test. | Data model is articulated,
expert review of
interoperability strategy.
Verification of model with
actual observational unit. | | | | | | Lowest
Readiness | | 3 | | | | | | Level