Collaboration between DBCP and GHRSST

- Drifter SST vital for satellite SST validation and algorithm development (GHRSST group)
- Hampered by lack of accuracy, resolution and metadata
- Reasonable set of requirements for HRSST drifters agreed
- Deployments rolled out over last 36 months
- ESA funding being sought (Sentinel-3 campaign)
- Model for collaboration with other specialised observation groups, e.g. for pCO₂, pH

Result of a dialogue: GHRSST requirements for drifters

- Hourly measurements
- Report design depth in calm water to \pm 5 cm
- Report of geographical location to \pm 0.5 km or better
- SST accuracy to \pm 0.05K or better, resolve 0.01K
- Report of time of SST measurements to \pm 5 minutes

Progress to date

(data inserted on GTS via Meteo France)

- Over 800 HRSST drifters have been deployed
 - Mainly by ESURFMAR and Meteo France
 - Report SST to 0.01C using BUFR
 - Mainly in N Atlantic
- Mostly HRSST-1s
 - Same SST sensor as before, just report to higher resolution
- 67 HRSST-2s deployed
 - Better digital sensor module: demountable to facilitate traceable pre- (and post-?)calibration
 - USD1k upgrade cost at present
- SPURS drifter fleet recruited

Non-HRSST via HRSST

Early HRSST-2 calibration issues

Early HRSST-2 calibration issues

METEO

Pierre's conclusion

- HRSST-2 buoys measure SST with a better accuracy than HRSST-1 buoys
- This is probably due to the fact that digital probes are better calibrated. The standard deviation of differences with CT SST probes is similar with HRSST-1 or HRSST-2 buoys (< 0.015 K)
- HRSST-2 buoys meet the accuracy requirement (0.05K) during calibration tests but some do not meet it at sea
- The most part of the « HRSST-1 to HRSST-2 » upgrade cost is due to the probe calibration
- Data users requiring such accuracy (satellite SST community) should contribute to the extra cost: EUMETNET does not plan to purchase more HRSST-2 buoys at its own expense

GHRSST meeting (Mar 12): DBCP response and next steps

- Agreed to establish joint pilot project (PP-HRSST), ends 2014
- Need to identify areas that will provide large number of matchups in shortest possible time
- These areas to be of interest to existing buoy operators as they will pay most of the cost
- ESURFMAR now routinely deploying HRSST-1 drifters
 - More than 180 deployed to date, mostly in N Atlantic, some in Indian Ocean
 - Report with increased resolution but not accuracy
 - Report in BUFR
- PP-HRSST funds being used to help Met Office to upgrade to high accuracy HRSST-2 drifters
- Need to get feedback from GHRSST asap
- Need to get follow-on funding through joint GHRSST/DBCP proposals

HRSST buoys: Initial GHRSST analysis

Gary Corlett, Sasha Ignatov, Matt Martin, Chris Merchant and Peter Minnett

Activities so far

 Matt Martin (Met Office) : matchups with FOAM/OSTIA

- Model/analysis foundation SST

• Gary Corlett (University of Leicester): matchups with AATSR v2.1

– Satellite skin SST

 Sasha Ignatov (NOAA) and Peter Minnett (RSMAS): matchups with VIIRS v5.3

– Satellite skin SST

OSTIA/FOAM

Matt Martin

Preliminary comparison of SST from the new and old type of surface drifters with operational FOAM output

• Data used in the comparison:

- Comparing the operational FOAM model output 1-day SST forecast (before assimilation) with the surface drifters.
- For a 10 day period $(8^{th} 17^{th} \text{ Feb 2012})$.
- Selected a region where most of the new type of drifters are:
 - 70W -> 10W, 40N -> 70N.
- Caveats to bear in mind when looking at the results:
 - Despite reasonable numbers of obs (~9300 of the old type, ~6400 of the new type), the number of independent obs is fairly small (only a limited number of actual drifters, each of which reports many times).
 - Difficult to distinguish model errors from observation errors.
- Overall summary:
 - old drifter obs types have a much smaller mean error than the new types (+0.02 vs +0.26).

• new drifter obs types have a slightly smaller standard deviation than the old type (0.42 vs 0.44).

AATSR Validation

Gary Corlett

AATSR Validation

- Compare AATSR SST-skin to drifter SST-depth
- Nearest pixel within 3 hrs. (correct for time difference using Embury et al., 2012)
- AATSR mission ended on 8th April 2012
 Loss of communication with Envisat
- Limit analysis to:
 - -70W -> 10W, 40N -> 70N.
 - -1st September 2011 to 1st April 2012

AATSR Results

	Number	N2	N3	D2	D3
Non-HRSST					
Day	3176	-0.17 (0.29)		-0.14 (0.30)	
Night	3138	-0.28 (0.23)	-0.26 (0.22)	-0.23 (0.29)	-0.26 (0.26)
HRSST					
Day	404	-0.44 (0.34)		-0.37 (0.30)	
Night	555	-0.48 (0.35)	-0.43 (0.25)	-0.40 (0.27)	-0.41 (0.26)

Skin to depth so expect difference of roughly -0.17 K

HRSST buoys warmer by 0.15 °C in North Atlantic; 0.2 °C for all regions

Best retrieval

VIIRS Validation

Sasha Ignatov, Peter Minnett

© Crown copyright Met Office

VIIRS – drifter statistics

	v5.3 non-		V5.3 HRSST	
	HRSST buoys		buoys	
IDPS SST2b night		IDPS SST2b night		
median	-0.292	median	-0.543	
sd	0.601	sd	0.702	
mad	0.414	mad	0.346	Best retrieval
count	50561	count	2404	
IDPS sst3b night		IDPS sst3b night		
median	-0.156	median	-0.363	
sd	0.531	sd	0.590	
mad	0.282	mad	0.234	
count	50561	count	2404	

Skin to depth so expect difference of roughly -0.17 K

Summary

- Very small number of match-ups so far
- Initial results show warm bias of 0.15-0.2 °C compared to existing drifters
 - Lower noise
- Work ongoing to
 - Expand number of matchups (add MODIS & AVHRR)
 - Compare to ARC SSTs (best satellite SSTs)
 - Compare HRSST and non-HRSST drifters
 - Investigate other features (e.g. drogue)

Where would be the most important deployment areas?

- Canary Islands: area of the Aquarius surface salinity validation campaigns (SPURS); effects of Saharan Air Layer and aerosols on infrared SSTs
- 2. SE-Asia: high water vapor and periodic smoke aerosols from forest fires
- 3. Upwelling areas: anomalous air-sea temperature differences; surface flow divergence tends to reduce buoys drifting into upwelling areas
- 4. High Latitudes: very low water vapour content; anomalous air-sea temperature differences) The effects of the higher quality might be best seen in the connection with the SPURS campaign

Events affecting progress over last 2 years

- ENVISAT AATSR died
- Some GHRSST participants have retired
- Draft proposal to ESA rejected
- Many issues with data flow
 - BUFR not universally decoded
 - 7 digit WMO IDs not compatible with databases
- New ESA ITT includes drifter SST traceability study
 - Should start in 2015

Next steps

- Seek additional funding from space community
 - At this stage no additional funding above agreed amount sought from Panel
- Work with manufacturers to consolidate and agree HRSST-2 specification and design
 - Add-on cost will need to fall for HRSST-2 to be widely adopted
- Decide whether to continue with PP-HRSST

