

Dr. R.Venkatesan

National Institute of Ocean Technology समुद्र राष्ट्रीय प्रौद्योगिकी संस्थान Earth System Science Organization पृथ्वी प्रणाली विज्ञान संगठन

> An Autonomous Institute under Ministry of Earth Sciences, Govt. of India पृथ्वी विज्ञान मंत्रालय, भारत सरकार के तहत एक स्वायत संस्थान

31 October 2014

ESSO Ministry of Earth Sciences Indian Ocean Observation Network

Green – Argo, Red line – XBT, Blue – Drifters, red square – RAMA, Yellow- CODAR, green_oval- ADCP, Red_oval – Moorings, white mark - TG

Present Buoy Network

12 OMNI, 7 Met Ocean & 5 Tsunami

	Buoy Location											
	OMN	ll Buoy		N	let Oce	ean Buo	y	Tsunami Buoy				
Buoy ID	Latitude (N)	Longitude (E)	Station Depth (m)	Buoy ID	Latitude (N)	Longitude (E)	Station Depth (m)	Buoy ID	Latitude (N)	Longitude (E)	Station Depth (m)	
AD06	18.8	67.0	3300	AD02	15.0	69.0	3850	TB03	6.4	88.5	3850	
AD07	15.0	68.9	3980	AD04	8.5	73.1	2250	TB05	11.0	89.5	3225	
AD08	12.0	68.7	4300	CALVAL	10.5	72.3	2070	TB06	14.6	89.5	2770	
AD09	8.2	73.3	2000	CB01	11.6	92.6	8	TB09	17.5	89.8	2280	
AD10	10.3	72.2	1925	CB02	10.8	72.2	20	TB12	20.2	67.6	3050	
BD08	18.1	89.6	2200	CB04	15.4	73.7	15	STB01	6.2	88.9	2500	
BD09	17.8	89.6	2250	CB05	14.2	80.2	12	STB02	20.8	65.3	3000	
BD10	16.5	88.0	2650									
BD11	13.5	84.0	3260									
BD12	10.5	94.0	3200									
BD13	14.0	87.0	3065									
BD14	7.0	88.0	3770									

Observational Moorings handled by India

OOS Activities

- ✓ Moored buoy Network
 - OMNI Buoy systems
 - Tsunami Buoy systems
 - Coastal Buoy systems
- ✓ CALVAL Phase –II Jointly with SAC

Technology demonstration of new observation tools, Calibration Facility

- Indian OMNI Buoy System (Prakruti)
- Indigenized Tsunami Buoy System- SAGAR BHOOMI
- Integrated Marine Surveillance System (R-Darsh)
- Automatic Identification System (AIS) for Buoy
- Met –Ocean Buoy interfaced with INSAT and GPRS communication
- Twin mode communication
- Design and Development of Autonomous Ocean Observation Robotic Fish (AquaBot)
- Calibration facility
- Optimization of power consumption in OMNI buoy systems using Hybrid power management technique
- BPR Tracker
- Buoy Position Tracker

International Projects

- ASIRI-Air Sea Interaction Research Initiative
- Interaction with International organizations:
- NOAA-PMEL,USA
- NOAA-NWS-NDBC,USA
- JAMSTEC, JAPAN
- SCRIPPS & WHOI, USA

Types of buoy Systems Handled

MET OCEAN BUOY

OMNI BUOY

TSUNAMI BUOY

Year	No of Cruises	No of buoys	sailed days
2010	14	12	106
2011	14	21	206
2012	13	24	150
2013	16	25	152
2014	13	24	138

Types of Moorings handled

In –house expertise - Design of mooring using software tools such as OrcaFlex & Cable Insitu mooring load from site compared with design analysis **Tsunami Mooring**

Vessels used to achieve buoy network

Sagar Kanya

Sagar Nidhi

Sagar Manjusha

		Pe	riod		
S.No	Year	From	То	No. of days	Name of the vessel
1	2006	05-12-2006	12-12-2006	8	Sagar Kanya
2	2006	13-12-2006	21-12-2006	9	Sagar Kanya
3	2007	10-04-2007	25-04-2007	16	Sagar Kanya
4	2007	28-04-2007	12-05-2007	15	Sagar Kanya
5	2007	12-07-2007	24-07-2007	13	Sagar Kanya
6	2007	30-08-2007	13-09-2007	15	Sagar Kanya
7	2007	21-09-2007	28-09-2007	8	Sagar Kanya
8	2010	26-03-2010	04-04-2010	10	Sagar Kanya
9	2010	06-04-2010	20-04-2010	15	Sagar Kanya
10	2010	20-04-2010	29-04-2010	10	Sagar Kanya
11	2010	22-10-2010	18-11-2010	28	Sagar Kanya
12	2010	20-11-2010	08-12-2010	19	Sagar Kanya
13	2010	11-12-2010	21-12-2010	11	Sagar Kanya
14	2010	27-12-2010	04-01-2011	9	Sagar Kanya
15	2011	09-05-2011	17-05-2011	9	Sagar Kanya
16	2011	18-05-2011	09-06-2011	23	Sagar Kanya
17	2011	21-07-2011	19-08-2011	30	Sagar Kanya
18	2011	24-08-2011	14-09-2011	22	Sagar Kanya
19	2012	22-04-2012	23-05-2012	32	Sagar Kanya
20	2012	27-06-2012	06-07-2012	10	Sagar Kanya
21	2012	10-09-2012	29-09-2012	20	Sagar Kanya
22	2014	04-02-2014	09-03-2014	34	Sagar Kanya
23	2014	24-06-2014	16-07-2014	23	Sagar Kanya

		Pe	riod		
S.No	Year	From	То	No. of days	Name of the vessel
1	2008	08-02-2008	22-02-2008	15	Sagar Nidhi
2	2008	27-03-2008	30-03-2008	4	Sagar Nidhi
3	2008	21-04-2008	07-05-2008	17	Sagar Nidhi
4	2008	10-05-2008	21-05-2008	12	Sagar Nidhi
5	2008	10-07-2008	24-07-2008	15	Sagar Nidhi
6	2008	20-09-2008	09-10-2008	20	Sagar Nidhi
7	2009	03-02-2009	16-02-2009	14	Sagar Nidhi
8	2009	20-05-2009	10-06-2009	22	Sagar Nidhi
9	2010	05-07-2010	21-07-2010	17	Sagar Nidhi
10	2010	01-09-2010	30-09-2010	30	Sagar Nidhi
11	2010	19-10-2010	01-11-2010	14	Sagar Nidhi
12	2011	01-01-2011	21-01-2011	21	Sagar Nidhi
13	2011	13-03-2011	08-04-2011	27	Sagar Nidhi
14	2011	02-08-2011	25-08-2011	24	Sagar Nidhi
15	2011	14-11-2011	05-12-2011	22	Sagar Nidhi
16	2011	05-12-2011	22-12-2011	18	Sagar Nidhi
17	2012	12-10-2012	04-11-2012	24	Sagar Nidhi
18	2012	25-12-2012	07-01-2013	14	Sagar Nidhi
19	2013	28-02-2013	04-04-2013	36	Sagar Nidhi
20	2013	10-06-2013	20-06-2013	11	Sagar Nidhi
21	2013	06-08-2013	22-08-2013	17	Sagar Nidhi
22	2013	18-09-2013	15-10-2013	28	Sagar Nidhi
23	2014	17-03-2014	26-04-2014	41	Sagar Nidhi
24	2014	01-05-2014	14-05-2014	14	Sagar Nidhi
25	2014	16-07-2014	15-08-2014	31	Sagar Nidhi

		Pe	riod		
S.No	Year	From	То	No. of days	Name of the vessel
1	2006	7/22/2006	7/31/2006	10	Sagar Manjsuha
2	2007	7/25/2007	7/25/2007	1	Sagar Manjsuha
3	2010	8/29/2010	9/6/2010	9	Sagar Manjsuha
4	2011	3/15/2011	3/28/2011	14	Sagar Manjsuha
5	2011	12/6/2011	12/14/2011	9	Sagar Manjsuha
6	2012	2/15/2012	3/10/2012	25	Sagar Manjsuha
7	2012	3/27/2012	4/1/2012	6	Sagar Manjsuha
8	2012	4/6/2012	4/25/2012	20	Sagar Manjsuha
9	2012	6/21/2012	6/29/2012	9	Sagar Manjsuha
10	2012	9/14/2012	9/25/2012	12	Sagar Manjsuha
11	2013	2/6/2013	2/13/2013	8	Sagar Manjsuha
12	2013	4/29/2013	5/5/2013	7	Sagar Manjsuha
13	2013	7/1/2013	7/4/2013	4	Sagar Manjsuha
14	2013	10/7/2013	10/11/2013	5	Sagar Manjsuha
15	2014	4/17/2014	4/21/2014	5	Sagar Manjsuha
16	2014	5/16/2014	5/28/2014	12	Sagar Manjsuha

Apart from the above vessels, Boris Petrov, Siderenko **&** Sagar Poorvi were also used.

(in collaboration with SAC-Ahmedabad)

Indian Tsunami Buoy System

- Paroscientific digiquartz Technology
- Range: 6,000m deep
- Built-in Temperature sensor
- Resolution: 1 mm in 6000 m
- Accuracy 0.01%
- High stability and reliability

Tsunami Events Captured by Indian Tsunami Buoys

Coastal buoys with INSAT Communication

Coastal Buoys Integrated with INSAT, GPRS communication systems and are deployed at Agatti – Lakshadweep Island, Goa, Andaman & Krishnapattinam Port - AP

Buoy with dual mode communication with INSAT, GPRS:

The coastal buoy was integrated with dual transceiver system (GPRS and INSAT) and tested successfully at NIOT and installed off Agatti, Lakshadweep Island, Goa, Andaman & Krishnapattinam Port-AP.

In this buoy system the General Packet Radio Service (GPRS) technology is utilized to handle huge volume of data through low power, higher transmission rate and cost effective means.

The main data transmission components consist of a data logger, a GPRS modem, INSAT transceiver and a receiving server. Every three hours (UTC) the raw data are collected by the sensors and processed by CPU and stored in the data logger.

The stored data are sent through GPRS modem using GSM network as well as through INSAT communication to shore station, NIOT.

State-of-the-Art Data reception facility

24 x 7 Constant vigil on Data Reception

SOP (Standard Operating Procedure) evolved

Vetted by NDBC, PMEL – USA

		STAN	IDARD OPE	ARD OPERATING PROCEDURE (SOP)						
ш	LE	005	Escalation 8	calation & Notification						
Stak	e Holder(s) 58PHT 8	SSAMC							
Dec	ument Typ	e Proced	ure / Process /	Policy						
80	CUMENT	CONTROL	AMENDAL	NT RECORD ME	хт					
SL. Na.	Release No.	Revision No.	Valid From	Brief Description of Change	pilon X	Appreced By				
1	1	0	1* May 2011	New Process for Exculation and No.	fication	Dr. R. Veskatesa				
2	1	1								
_										
New	PREPAR	CD BY	Name D	r. K. Venkatusen	Same	AGREED BY				
Desi	gatios : h	oject Scient	in Designation	an: Geoup Head	Designat	Gen:				
Orga Sign	alitation: N altare:	IOT	Organizati	ion: NBOT	Organization: Electronic Lab					

ADDRESS

ADvanced Data REception & analysiS System

Working NIOT vs RAMA Buoy Network

RAMA Network

NIOT Network

NIOT Moored buoy Data Availability

Year	20	010			201	11				20:	12			2	013				201	L4	
Buoy ID	Jul-Sep	Oct-Dec	Jan-M	ar Ap	r-Jun	Jul-Sep	Oct-D	Dec J	an-Mar	Apr-Jun	Jul-Sep	Oct-Dec	Jan-Ma	r Apr-J	un Jul-S	ep Oct-	Dec Jar	n-Mar A	pr-Jun	Jul-Sep	Oct-Dec
AD01																					
AD02			1	-	+								+								
AD03		1																			
AD04																					
AD05																					
AD06													+								
AD07													1								
AD08													+				-				
AD09													1								
AD10													+		-		-		H		
BD02			1																		
BD06																					
BD07																					
BD08																					
BD09																					
BD10																					
BD11												1									
BD12																					
BD13			-												-		-				
BD14																					
CB01				-				-				1	+								
CB02												1	+				-				
CB04														-							
CB05																	-				
CALVAL																	-				
SW02												1									
		204	<u></u>				204				20	4.0	· ·			4.5			24		
Year		201	.0				201	1			20	12			20	13			20)14	
																					1
Buoy ID J	an-Mar	Apr-Jun J	ul-Sep	Oct-De	c Jan-N	/lar Apr-	Jun Ju	ıl-Sep	Oct-Dec	Jan-Mar	Apr-Jun	Jul-Sep	Oct-Dec	Jan-Mar	Apr-Jun	Jul-Sep	Oct-Dec	Jan-Ma	r Apr-Jur	Jul-Sep	Oct-Dec
		-			_						-									-	
TROO																		1			
IB03																		1			
					-																
TB04																					
1004																					
TB05			I						-									1	_		
					_																
TROC									1			1 1									
IDUO									1			1									
TB08																					
									1	T				-							
тв09																					
				_																	
TR10				_							L										
1910																					
									1												
TB12																					

OMNI Buoy: Data returns (%)

Buoy ID	BD 08	BD 09	BD 10	BD 11	BD 12	BD 13	BD 14	AD 06	AD 07	AD 08	AD 09	AD 10
Sensor												
Winds	100	100	100	92	100	91	45	95	94	93	91	92
Air Temp	100	100	100	92	100	91	35	95	94	93	91	92
Air Press.	100	100	100	92	100	91	52	95	94	93	91	92
Humidity	79	100	48	75	16	67	35	95	64	93	89	91
SST 1m	80	40	66	39	7	39	19	95	94	93	92	92
SST 5m	69	100	67	84	49	62	42	83	91	93	92	92
SS Temp (10m)	98	100	98	98	100	97	70	95	94	93	91	92

Data Availability from July 2013 to September 2014

Inter Institutional R&D Projects

000 III (1

- The first underwater moored observatory deployed by India in Polar Waters.
- The moored observatory consist of a suite of ten oceanographic sensors from international repute measuring temperature, salinity, current profiles and other vital parameters.
- The information measured and recorded by the sensors would yield much needed data to understand the cause and impact of climate variability in a regional to global perspective.
- The design, development and installation of this underwater moored observatory were successfully executed by OOS-NIOT in collaboration with NCAOR Goa. This in-house effort designed to withstand harsh polar region is a milestone achievement for MoES and India.

Southern Ocean

Southern Ocean Carbon Processes (SOCarP) Study in 2015

Type of	Lat	Long	Depth (m)
mooring	(S)	(E)	
Subsurface	40	57.5	~5000

Sensor Position In Mooring

	SENSOR POSITION MOORING	IIN
SI. NO	ITEM DESCRIPTION	DEPTH FROM SEA SURFACE (m)
1	ADCP	300
2	Current meter	1450
3	Transmissometer	1450
4	Sediment trap	1500
5	CTD + DO	2500
6	CTD + DO	3500
7	Current meter	4450
8	Transmissometer	4450
9	Sediment trap	4500
10	Acoustic release	4970

ANTARTIC MOORING IN 2016

INDO – US collaborative Project

Air-Sea Interactions in the Northern Indian Ocean - Regional Initiative **Ocean Mixing and Monsoons**

UNIVERSITY of WASHINGTON

2 COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK.

SCRIPPS INSTITUTION OF OCEANOGRAPHY WOODS HOLE OCEANOGRAPHIC INSTITUTION

UNIVERSITY OF MASSACHUSETTS

USA

OREGON STATE UNIVERSITY UNIVERSITY OF WASHINGTON UNIVERSITY OF NOTREDAME **COLORADO STATE UNIVERSITY**

COLUMBIA UNIVERSITY UNIVERSITY OF MIAMI UNIVERSITY OF ALASKA

SERVICES.

CHENNAI

INDIAN INSTITUTE OF TECHNOLOGY MADRAS INDIAN INSTITUTE OF TECHNOLOGY BHUBHANESWAR

Indian

INDIAN NATIONAL CENTRE FOR OCEAN INFORMATION

NATIONAL INSTITUTE OF OCEANOGRAPHY(NIO) - GOA

INDIAN INSTITUTE OF SCIENCE, BANGALORE

NATIONAL INSTITUTE OF OCEAN TECHNOLOGY,

Pictures from NIOT & Roger Revelle-USA – Onboard Meet

In-house Innovations

Technological Developments... Indigenous OMNI Buoy system-*Prakruti*

A prototype Indigenous OMNI buoy system was designed, developed, integrated, tested and deployed during first trial in October 2013. The Second phase trial is in progress.

Salient Features of Prakruti

- More number of parameters (106) collected and transmitted in real time.
- Capability to transmit data via INSAT, GPRS and INMARSAT.
- Low power processor(Sleep mode, Active mode)
- Interface to various Analog and Serial Sensors with Individual Power control.
- Three level Watch Dog Timer interface for recovering the system in case of any malfunction.
- Individual communication line, sensor power status and buoy health data in real time to shore using bi-directional communication.
- NVSRAM Memory interface for two years processed data and raw data storage.
- Hybrid charge controller to work with multiple power sources like primary and secondary battery, wind turbine, solar panel.
- Qualified in standardized qualification test to work in marine environment:
- The performance of the system was satisfactory throughout the period of working and data generated was in line with the proven systems.

Integrated Marine Surveillance System -R-Darsh

- Out of four coastal buoys, a unique feature (IMSS) is introduced in CB04 (Goa) buoy to have real time visual observations of the buoy surrounding remotely.
- Three Cameras are installed on the mast of the buoy system at 120° displacement covering 360°.
- Apart from standard met-ocean measurements the buoy can also transmit real-time day and night video and still photographs of the surrounding environment, captured using the high resolution video cameras encapsulated to work in hostile marine environment.
- The video and photographs are transmitted through 3G telemetry. This is accomplished above water and could be implemented underwater also.
- The above facility would help to view the present sea conditions remotely, which would be more useful for the fishermen community. In addition, this feature helps to track the buoy system for its continuous functioning and also alert the respective authorities, in case of any disturbances to the buoy system.

Technology Developments Coastal Buoys Integrated with INSAT, GPRS

✓ Buoy with dual mode communication with INSAT, GPRS:

✓ The coastal buoy was integrated with dual transceiver system (GPRS and INSAT) and tested successfully at NIOT and installed off Agatti, Lakshadweep Island, Goa, Andaman & Krishnapattinam Port-AP.

 \checkmark In this buoy system the General Packet Radio Service (GPRS) technology is utilized to handle huge volume of data through low power, higher transmission rate and cost effective means.

 \checkmark The main data transmission components consist of a data logger, a GPRS modem, INSAT transceiver and a receiving server. Every three hours (UTC) the raw data are collected by the sensors and processed by CPU and stored in the data logger.

✓ The stored data are sent through GPRS modem using GSM network as well as through INSAT communication to shore station, NIOT.

Technological Advancements Aquabot

As a part of the developmental projects undertaken by OOS, second phase development of the laboratory scale AquaBot prototype with individually controlled pectoral fins for the pitch control and caudal fin for propulsion is developed. In this development, presently, an FRP outer hull is produced to give a hydrodynamic shape and fish like appearance. The present prototype has been tested in sea environment to study the behavioral analysis of the prototype in salt water. Full pledged control system is underway.

COMPARISON OF MOORING ANALYSIS

RESULTS COMPARISON

S.No	Parameter	CABLE Results	ORCAFLEX Results
1.	Tension on Mooring	5.5 KN	6 KN
2.	Anchor Draft	1.07 m	Not specified, but given that, draft is negligible.

Twin mode Communication System was established in ITB03 Tsunami Buoy on 18th August 2013 for Proof of Concept (POC)

- Standard mode data will be sent through INSAT during the configured time slot at hourly interval
- Every day 5th hour GMT standard mode data will be transmitted through INMARSAT (if both INSAT and INMARSAT available) to daily check the status of INMARSAT modem.
- Event data, Post event data will be transmitted through INMARSAT.
- INMARSAT Modem can be configured for destined E-Mail ID (Maximum 2 email ID) and Modem destinations (Maximum 2 modem no) during Tsunami Event
- Data from INSAT and INMARSAT [INSAT E-mail, INMARSAT E-mail and INMARSAT Modem] can be received in same GUI application and updated in same log file.

Significance & Utilization of Buoy data

JAL – November 2010

PHAILIN - October 2013

NANAUK – June 2014

THANE – December 2011

HELEN - November 2013

HUD HUD - Oct 2014

LEHAR - November 2013

MADI – December 2013

More cyclones occur in the Bay of Bengal than the Arabian Sea.

Since inception, moored buoys have made measurements during extreme events and provided real time data to IMD, for data assimilation in operational forecasting models for cyclones. State-of-the-art observation technology helped to track many cyclones

PHAILIN CYCLONE COMES UNDER CATEGORY 5 AND ONE OF MOST FURIOUS CYCLONE FORMED IN THE BAY OF BENGAL IN THE LAST 14 YEARS.

Hudhud Cyclone-Oct 2014

Mohapatra said significant upgradation in infrastructure enabled improved forecast. Remote sensing data from satellites have provided vital parameters to IMD's cyclone models. The computing ability has been scaled up by several notches. At least 30 observation stations have been set up in the Bay of Bengal and the Arabian Sea by the National Institute of Ocean Technology, Chennai. An agreement was signed in 2010, which enabled interactions of Indian weather scientists with their US counerparts. "The result is that today we are able to make accupredictions about cyclones," Mohapatra said.

Constraints and Challenges....

- Ship time allotment at favourable weather conditions
- Bio-Fouling and Corrosion
- Vandalism & Piracy
- Funds
- Manpower

Retrieval of CALVAL Data buoy – OBM Boat Damage Incident

• Incident Date : 31-07-2014

Very Rough Weather during retrieval

Boat deck boards damaged

- During the course of CALVAL buoy retrieval operation, Men on boat approached the buoy.
- •
- Sudden high swells and high wind speeds were picked up after approached the buoy
- Men on boat communicated to deck that they wanted to come back to deck due to very bad weather
- FT, Crew team picked up men on boat safely on to deck, but while lifting OBM boat deck boards got damaged

Natural Challenge – Biofouling

Measures taken for antifouling

- Rolling copper foils over the sensors
- TBT mounting on sensors
- Rolling polythene sheets
- Antifouling paint

Preventive measures

Vandalism on Buoys

No Vandalism after change of Location

Inconsistent Performance of Argo Transmitters

Buey ID	Count of	Argos	Deployed	Position Last	Working
Buby ID	Deployment	Transmitter ID	Date	received	Days
AD06	1	76631	20-10-2012	03-10-2013	348
AD06	П	76694	03-10-2013	24-09-2014	356
AD06	III	76716	24-09-2014	27-09-2014	3
AD07	1	76716	22-10-2012	01-10-2013	344
AD07	П	76716	07-10-2013	26-02-2014	142
AD07	III	76716	24-04-2014	22-09-2014	151
AD07	IV	76694	26-09-2014	24-10-2014	Working
AD08	I.	76531	23-10-2012	06-06-2013	226
AD08	П	76699	29-09-2013	16-03-2014	168
AD08	ш	76699	21-04-2014	01-10-2014	163
AD09	I.	76694	26-10-2012	25-09-2013	334
AD09	н	76631	12-10-2013	27-07-2014	288
AD09	ш	76631	29-07-2014	24-10-2014	Working
AD10	I.	76699	25-10-2012	26-09-2013	336
AD10	П	76531	10-10-2013	10-12-2013	61
AD10	III	76531	20-09-2014	04-10-2014	14
BD08	IV	76694	28-03-2013	15-06-2013	79
BD08	v	76721	15-06-2013	13-02-2014	243
BD08	VI	76721	20-02-2014	01-05-2014	70
BD09	I.	76758	27-03-2013	16-06-2013	81
BD09	П	76742	16-06-2013	29-11-2013	166
BD09	III	76742	23-02-2014	24-10-2014	Working
BD10	IV	76649	30-03-2013	08-06-2013	70
BD10	v	76655	17-02-2014	29-06-2014	132
BD10	VI	76655	01-07-2014	24-10-2014	Working
BD11	III	76691	02-04-2013	07-10-2013	188
BD11	IV	76683	11-02-2014	26-02-2014	15
BD11	v	76758	13-07-2014	24-10-2014	Working
BD12	III	76703	21-03-2013	30-12-2013	284
BD12	IV	76703	27-02-2014	14-04-2014	46
BD13	VII	76655	25-06-2013	10-08-2013	46
BD13	VIII	76655	13-08-2013	13-02-2014	184
BD13	IX	76747	14-02-2014	19-03-2014	33
BD14	v	76745	23-06-2013	10-08-2013	48
BD14	VI	73745	16-08-2013	01-03-2014	197
BD14	VII	76745	02-03-2014	25-05-2014	84
BD14	VIII	76745	09-07-2014	02-09-2014	55

Stickers and stickers pasted on boat for awareness

Societal Awareness Programmes:

மிதவைகள் மீனவர்களின் நண்பன்

- வானிலை மற்றும் பருவகால மாற்றங்களையும் முன்கூட்டியே கணிக்க உதவுகிறது
- மிதவைகள் மக்களை புயல், சுனாமி போன்ற இயற்கை சீற்றங்களிலிருந்து பாதுகாக்க தேவையான நடவடிக்கைகளை சரியான நேரத்தில் எடுக்க உதவுகிறது.
- பருவகால மாற்றங்களையும், அவற்றின் தன்மையையும், தாக்கங்களையும் முன்சுட்டியே கண்டறிபப்படுவதால் மீனவர்கள் மீன்பிடி நடவடிக்கைகளை தெளிவாக திட்டமிட முடிகிறது.
- கடலில் மீன் பிடிக்க செல்லும்போது இம்மிதவையை கண்காணிக்கவும்.
- மிதவையின் அருகில் மீன்பிடிப்பதை தவிர்க்கவும் ஏனெனில் வலைகள் அதன் அடியில் சென்று சிக்கும் வாய்ப்பு உள்ளது.
 உங்கள் நண்பர்களிடம் இம்மிதவையின் பயன்கள் குறித்து
- இதில் படகினை கட்டவோ அல்லது மிதவையை சேதப்படுத்தும் எத்தகைய நடவடிக்கையும் மேற்கொள்ள வேண்டாம் என கேட்டுக்கொள்ளப்படுகிறது.
- மிதவை தண்ணிச்சையாய் நகர்ந்து சென்றாலோ அல்லது யாரேலும் அதனை சேதப்படுத்துவதனை கண்டாலோ உடனடியாக கடலோர காவல் நிலையத்தில் அல்லது கீழ்கண்ட முகவிர்க்கு தகவல் தரவும்.

இயக்குநர், தேசிய கடல்வளத்துறைத் தொழில்நுட்ப கழகம் இந்திய அரசு புவி விஞ்ஞான அமைச்சகம், பள்ளிக்கரனை, சென்னை 600 100.

ട്രொലെല്ലേറ്റ് : 91 44 66783536 / 66783537 / 66783540 ട്രொലൈക്ക് 91 44 22460661 / 22480645 //22480676 // 66783400

NATIONAL-INSTITUTE OF OCEAN TECHNOLOGY

 ఇవి వాతావరణ మార్పులు మరియు అంచనాల కోసం ఉపయోగిస్తారు
తుప్రాను మరియు సునామీ వంటి ప్రకృతి పైపరీత్యాల నుండి చూసవులను రక్షించడానికి అవసరమైన దర్శలు తీసుకోవటానికి ఉపయోగిస్తారు

బోయాలు మత్యకారుల స్నేహితులు

- బోయాలు వాతావరణ మార్పులు మరియు దాని ప్రభావాల అంచనాకు ఉపయోగిస్తారు, కాటట్టి మత్స్యకారులు దానికి అనుగుణంగా తమ వేట ప్రణాళికశ్ర ఇది ఉపయోగపడుతుంది
- మత్స్యకారులు పేటకు పెళుతున్న సమయంలో బోయాలను జాగ్రత్తగా చూడగలరు
- బోయాలు సమీపంలో పేట చేయకూడదు, ఎందుకంటే పల చిక్కుకునే ప్రచూదం ఉంది
- బోయా ఉపయోగాలను ఇతర మత్స్యకారులకు తెలియజేయండి
- బోట్లను బోయాలకు కట్టకూడదని మా అభ్యర్థన
- ఎవరైనా బోయ్ కొట్టుకు పోవడాన్ని, లేద హాని కరిగి ఉండడం చూసి ఉంటే, దయచేసి కోస్ట్ గార్డ్ కు లేదా క్రింద చిరునామాకు సమాదారం తెలపగలరు

NATIONAL HASHITUTE OF OCEAN TECHNOLOGY

Indo- Japan Collaboration

Ocean observation

Suggested Areas of Collaboration

Capacity Building

- OOS training on calibration of sensors for meteorological and oceanographic observations
- Testing and calibration of pressure sensor for water level measurements for Tsunami
- Training on interpretation and understanding of Tsunami triggered data
- Training on new methodology on early detection of Tsunami
- Support in development of deep sea floor observatory
- Support and design of mooring system for southern ocean
- Development of newer materials for deep sea applications
- Joint Development of newer observation tools and Systems
- **Control of bio fouling on Sensors**
- **Development of Lithium battery**

Indo- Norwegian Collaboration

Suggested Areas of Collaboration

- בגנוומוושב טו שנובוונוונ אבושטווובו
- **Technical knowledge Support**
- Improvement or development in Earth science and services
- Arctic observations & collaboration
- **Ocean observation & Research Programmes**

Indo US Collaboration RAMA ASIRI OMM Project

Research Initiatives

- Inter-annual variability of the freshening in the northern Bay of Bengal
- The observed temperature inversion in the Bay of Bengal and their role in the intensification of cyclone formed in the Bay of Bengal during North-east monsoon season.
- Validation of satellite current data with buoy observed current
- The intra-seasonal oscillation observed in the ocean parameters during southwest monsoon period and its relation to monsoon breaks
- Upper ocean response to tropical cyclone 'Nanauk' in the Arabian Sea
- Analysis of wave characteristics
- Comparison of theoretical and observed wave spectra
- Simulation of WAM model significant wave height during extreme events.
- Cyclonic responses in the Bay of Bengal

FRESHENING EPISODES IN THE HEAD BAY -2011 (18N, 89E)

VALIDATION OF SATELLITE DATA

• The inter-comparison of the surface currents and winds

obtained from the moored buoy with the satellite data.

• Validation of TRMM-3B42 precipitation product with the

rain gauge data from the OMNI Buoys.

• Validation of radiation data with CERES daily data

Validation of surface current data from the OMNI buoys were validated using OSCAR and GEKCO products

WAVE SPECTRUM ANALYSIS

- To analyze wave spectrum over the northern Indian Ocean using observations from moored buoy.
- Comparison of observed spectrum with the theoretical spectrum
- Validation of WAM model spectrum with help of the observed spectrum.
- Simulation of significant wave height for cyclones in the Northern Indian Ocean during 2010-2014 using wave model WAM

Comparison of observed spectrum with the theoretical spectrum at

Equations for the JONSWAP (Hasselmann et al, 1973) is $S(f) = \alpha (g^2/f^5) e^{-\beta (f_p/f)^4} \gamma^{e^{1/2((f-f_p)/\sigma f_p)^2}}$

Equations for the Torsethaugen spectrum (Torsethaugen, 2004)

 $S(f_n) = \sum_{j=1}^2 E_j S_{jn}(f_{jn})$

- Theoretical spectrum matches with the primary peak of the observed wave spectrum
- During the southwest monsoon season the theoretical and wave spectrum from the buoy system exhibits good agreement

Published in International Journal of Remote sensing Vol. 35, Issue 14, July 2014, "Validation of in-situ wave spectrum with JONSWAP in the Indian Ocean" - Vimala J, Latha G and Venkatesan R

Dr. R. Venkatesan dr.r.venkatesan@gmail.com