

How we calibrate the Wave Height and Period Measurements from the Gravitational Acceleration Wave Buoys in RMIC/AP

YU Jianqing

RMIC for the Asia-Pacific Region
National Center of Ocean Standards and Metrology, China
October, 2014

1. The Gravitational Acceleration Wave Buoys

- ◆Wave information is usually one of the top variables requested by physical observations.
 - ➤ Wave/ surface winds/ currents;
 - ➤ Wave/ temperature/ salinity.
- ◆The Gravitational Acceleration Wave Buoys are used widely for wave information.
- ◆They measure near surface waves, and are ideal for collecting large quantities of wave data at a specific point.
- ◆They are often taken as the **measurement standards (reference instruments)** to assess the performance of other types of wave measuring instruments.

a ground-wave Radar array

1. The Gravitational Acceleration Wave Buoys

- ◆ The Gravitational Acceleration Wave Buoys measure vertical acceleration, integrate the acceleration signal twice to give displacement, and provide the wave height information.
- ◆ They measure the time period between successive waves.
- ◆ The directional buoy gives direction information.
- The wave signals are stored temporarily onboard the wave buoy and then transferred to a computer back at the shore by a radio system.

2. The method for calibrating a buoy/transducer

Vertical rotating arm method*

Calibration device in RMIC/AP

^{*:} Vadasz Fekete. United States Patent (4,158,956). Jun. 26, 1979.

3 The Measurement Standard For Public Service for the laboratory calibration of the Gravitational Acceleration Wave Buoys

- ◆ The Calibration Device of Wave Buoy was developed by RMIC/AP.
- **♦** Maximum Loading Weight: 180 kg, measurable diameter of buoys: (0.5~1.0) m.

Round truss

Control and data acquisition system

Frequency speed control and power supply system

4. NCOSM is authorized to carry out metrological verification, calibration and test

Items of authorized verification/calibration/test	Measuring range	Uncertainty/accuracy class/maximum permissible error	Verification regulation or technical specification
Gravitational Acceleration Wave Buoys/ transducers	Wave height: $(1\sim6)$ m Wave period: $(2\sim40)$ s	Wave height: MPE: \pm 0.3%F.S U =11 mm (k =2) Wave period: MPE: \pm 0.5 s U =0.16 s (k =2)	JJG (Ocean) 04:2003 The Gravitational Acceleration Wave Buoy

4. NCOSM is authorized to carry out metrological verification, calibration and test

The Certificate of Metrological Authorization

- ◆The calibration device was certified as a Measurement Standard for Public Service by AQSIQ in 2004.
- **◆**AQSIQ: the Chinese General Administration of Quality Supervision, Inspection and Quarantine

4. NCOSM is authorized to carry out metrological verification, calibration and test

序号	测量仪器名称	校准参量	領域代码	規范代号(含年 号)名称	测量范围	扩展不确定 度(校准和测 量能力, k=2)	限制说明	各注
		温度	1501	海水声速仪校准	(-2~35) °C	ℓ=0.002°C		
4	海水声速仪	电导率	0401	方法	方法 (0	方法 (0~ ℓ=0.003mS/c		
		压力	1320	11	(0~ 60)MPa	Uni=0. 015%		
		速度	1324		(1400~ 1600)m/s	U=0.05 m/s		
	重力加速度 式波浪浮标	波高	1303	重力加速度式波 浪浮标检定规程 JJG(海	(1~6) n	U=11mm		
		波周期	0412	洋)04-2003	(2~40)s	<i>U</i> =0. 16s		
6	重力加速度 よ波浪传感 死	波高	1303	重力加速度式波 浪浮标检定规程 JJG(海	(1~6)m	<i>U</i> =11mm		
		波周期	0110	洋)04-2003	(2~40)s	<i>U</i> =0. 16s	n nçı	
7	浮子式验潮 仪(水位计)	潮位	1303	浮子式验潮仪检 定规程 JJG587-1997	(0~8) m	<i>U</i> =3mm		
8	声学验潮仪 (水位计)	潮位	1303	声学验潮仪检定 規程 JJG947-1999	(0~ 6,5) m	U=3mm		
9	压力验潮仅	潮位	1303	压力验潮仪检定规程	(0~8)m	U=3mm		
	CARLETT	压力		JJG946-1999	(0.1~ 6) MPa	Uni=0.02%		
10	海水 pH 测量 仅	pH (f)	0233	海水 pH 测量仪校 准方法 Q/HBJ 03.82-2011	0~14	<i>U</i> =0. 01		
	0.0000000000000000000000000000000000000			JJG946-1999 海水 pH 测量仪校 准方法 Q/HBJ	6) MPa			

Registration No. CNAS L3365

5. The calibration procedure of the Gravitational Acceleration Wave buoys

2013-06-03 広館

- Verification regulation or technical specification:
- JJG (Ocean) 04:2003 The Gravitational Acceleration Wave Buoy;
- JJF1059 Evaluation and Expression of Uncertainty of Measurement.

国家海洋局发布

2012-12-03 宣布

GUM: Guide to the Expression of Uncertainty in Measurement

5.1 The setting of calibration points

- ◆ The calibration points of wave height: 1.0m, 3.0m, 6.0m;
- ◆ The calibration points of wave period: take 7 wave period values at each calibration point of wave height according to the principle of uniform frequency-point distribution within the period range of the buoy verified.

$$T_{0i} = \frac{6T_{\text{max}} \cdot T_{\text{min}}}{i \cdot T_{\text{max}} + (6 - i)T_{\text{min}}}, \qquad T_{\text{min}} \ge \sqrt{\frac{21\pi \cdot H_0}{g}} \begin{cases} H_0 = 1.0 \text{ m, T'}_{\text{min}} = 2.6 \text{ s;} \\ H_0 = 3.0 \text{ m, T'}_{\text{min}} = 4.5 \text{ s;} \\ H_0 = 6.0 \text{ m, T'}_{\text{min}} = 6.4 \text{ s} \end{cases}$$

$$\frac{1}{T_{\text{max}}} = \frac{1}{T_{\text{min}}} = \frac{1}{T_{\text{min}}$$

$H_0(m)$	6.0 m						
$T_0(s)$	20.00	14.80	11.70	9.70	8.30	7.20	6.40
$H_0(m)$	3.0 m						
$T_0(s)$	20.00	12.70	9.30	7.30	6.10	5.20	4.50
<i>H</i> ₀ (m)	1.0 m						
$T_0(s)$	20.00	9.50	6.20	4.60	3.70	3.00	2.60

5.2 The calibration steps

- 1) Determine the mounting point on the radial arm of the device according to the requirements for the calibration point of wave height.
- 2) Mount the wave buoy to the buoy-holder on the radial arm, and adjust the tension of chain reasonably to make the chain tightly engaged with the gear.

5.2 The calibration steps

 3) Increase/decrease the counterweight to regulate the balance of the device truss.

5.2 The calibration steps

- 4) Set the standard period in the control system and rotate the truss.
- 5) Start to perform measurement when the truss rotates at a constant velocity state.
- 6) Record the standard wave height Ho and standard period To of the calibration point, and the corresponding measurements of wave height and wave period from the buoy being calibrated.
- 7) Process the data and issue a calibration certificate.

Measuring error:

$$\begin{cases} \Delta H = H - H_0 \\ \Delta T = T - T_0 \end{cases}$$

5.3 The measurement traceability systems

wave height

5.3 The measurement traceability systems

wave period

5.4 Evaluation of the uncertainty in measurement

Uncertainty Source	Symbol	Standard Uncertainty (mm)
Measurement repeatability of the calibrated instrument	$u_{\it rep}$	5.00
Measurement error of the range from the buoy-holder to the center of the round-truss	$u_{\Delta R}$	0.85
Accuracy of the A/D conversion	$u_{A/D}$	ignored
Error of the rotation radian	$u_{\Delta heta}$	0.64
Measurement error of the horizontal line	${\cal U}_{\Delta h_0}$	0.69

$$U = k \cdot u_c = 2 \times 5.16 \text{mm} = 11 \text{mm} (k = 2)$$

5.4 Evaluation of the uncertainty in measurement

For wave period measurement:

- The uncertainty sources of the wave period measurement calibration consist of:
 - (a) Measurement repeatability of the calibrated instrument;

(b) Error of the interrupt impulse for time interval (period).

Uncertainty Source	Symbol	Standard Uncertainty (s)
Measurement repeatability of the calibrated instrument	И _{t rep}	0.08
Error of the interrupt impulse for time interval (period)	$oldsymbol{\mathcal{U}}_{stime}$	ignored

$$U = k \cdot u_c = 2 \times 0.08s = 0.16s$$

6. The QA/QC for the calibration procedure

- ◆ The calibration is traceable to the SI through certified national measurement institutes. Main measuring parts of our calibration device should be calibrated/verified at regular intervals.
- It is in compliance with the specific verification regulations issued in China and ISO/IEC 17025:2005.
- ◆ The calibration device is checked by AQSIQ every four years. If qualified, it would be authorized to be used for public service as a Measurement Standard in accordance with the Law on Metrology of the People's Republic of China.
- Only well trained engineers with metro permitted to carry out the calibration.

7. Summary

- ◆ NCOSM is authorized to carry out metrological verification, calibration and test of the Gravitational Acceleration Wave Buoys and transducers.
- Developed by NCOSM, the wave buoy calibration device was certified as the Measurement Standards for Public Service in 2004.
- We built the measurement traceability systems of wave height and period calibration and do the QA/QC procedure.
- NCOSM acts as a technical supporter to ensure the accuracy and reliability of data in national marine observation projects in China.

Items of authorized verification/calibration/test	Measuring range	Uncertainty/accuracy class/maximum permissible error	Verification regulation
Gravitational Acceleration Wave Buoys / transducers	Wave height: $(1\sim6)$ m Wave period: $(2\sim40)$ s	Wave height: MPE: \pm 0.3%F.S U =11mm (k =2) Wave period: MPE: \pm 0.5 s U =0.16 s (k =2)	JJG (Ocean) 04:2003 The Gravitational Acceleration Wave Buoy

Thank you for your attention!

E-mail: yujianqing@ncosm.gov.cn Office Phone:+86 022 27539516

