The Ekman Current Observed From Drifters In The Northeast Pacific

DONG-KYU LEE

LUCA CENTURINONI

Ekman Model

- Ekman wind-driven current model,

$$-fv = \frac{du}{dz} \left(K_z \frac{du}{dz} \right)$$

$$fu = \frac{dv}{dz} \left(K_z \frac{dv}{dz} \right)$$

- Solution,

$$\vec{u} = \frac{\tau H}{\sqrt{2}K_z} e^{z/H} e^{-i\theta}$$

Where
$$\theta = (z/_H + \pi/_4)$$

Ekman Model

- Here Ekman Layer Depth

$$H = \left(\frac{2K_z}{f}\right)^{1/2}$$

- H is also depend on au, i.e. eddy viscosity coefficient K_Z depends on wind stress.
- Angle at 15m becomes smaller with stronger wind,

Ekman Spiral
$$\theta = (z/H + \pi/4)$$
, and angle increases with depth.

Observation Area – Strong Westerlies, Weak Eddy Activity

Observed Amplitude and Angle

Observations Indicate

 U_*

- 1. Angle is not depend upon wind stress!
- 2. Amplitude $\sim U_*^{1.05}$ Ralph and Niiler (1999)
- 3. Seasonal difference!

From Lenn and Cherskin (2009) Rotating eddy viscosity with depth

EKMAN MODEL WITH ROTATING EDDY VISCOSITY

1. Ekman wind-driven current model in complex domain (Lenn and Cherskin),

$$if[u+iv]=a[\partial^2 iv/\partial^2 z]+c[\partial^2 u/\partial^2 z]$$

2. *a* and *c* become real number, the correct model for rotating eddy viscosity is

$$f[u+iv] = \partial/\partial z \{ (a(z)e^{i\theta})[\partial (u+iv)/\partial z] \}$$

3. The model can be solved numerically using Matlab solver

Rotating eddy viscosity with depth

Yearly Amplitude And Angle

Observation and Model Indicate

- 1. Eddy viscosity has direction, strong wind -> downwind direction ($^{\circ}30^{\circ}$) and weak wind -> cross wind direction ($^{\circ}80^{\circ}$)
- 2. Model indicates mean drogue depth may be shallow in winter.

Verification of Model Needs

- 1. Mean drogue depth in winter may be shallower than 15m by collapsing drogue.
- 2. Drogue status recheck before 2002.
- 3. Drifter with pressure gauge is planned for measuring drogue depth in high wave state.