PP-HRSST

Pilot Programme for High Resolution Sea Surface Temperature

- Review objectives
- Review progress during year
- Next steps: workplan

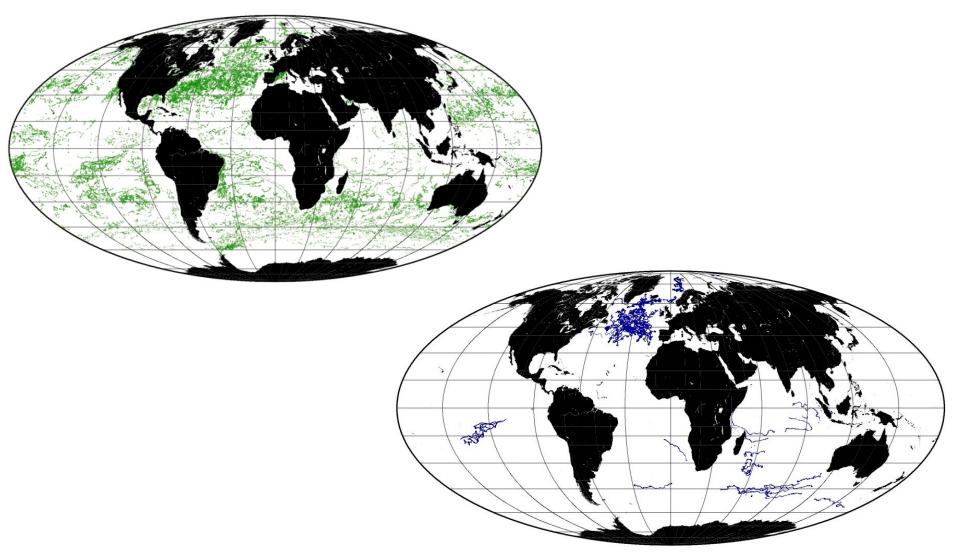
Collaboration between DBCP and GHRSST

- Drifter SST vital for satellite SST validation and algorithm development (GHRSST group)
- Hampered by lack of accuracy, resolution and metadata
- Reasonable set of requirements for HRSST drifters agreed
- Deployments rolled out over last 24 months
- ESA funding being sought (Sentinel-3 campaign)
- Model for collaboration with other specialised observation groups, e.g. for pCO₂, pH

Result of a dialogue: GHRSST requirements for drifters

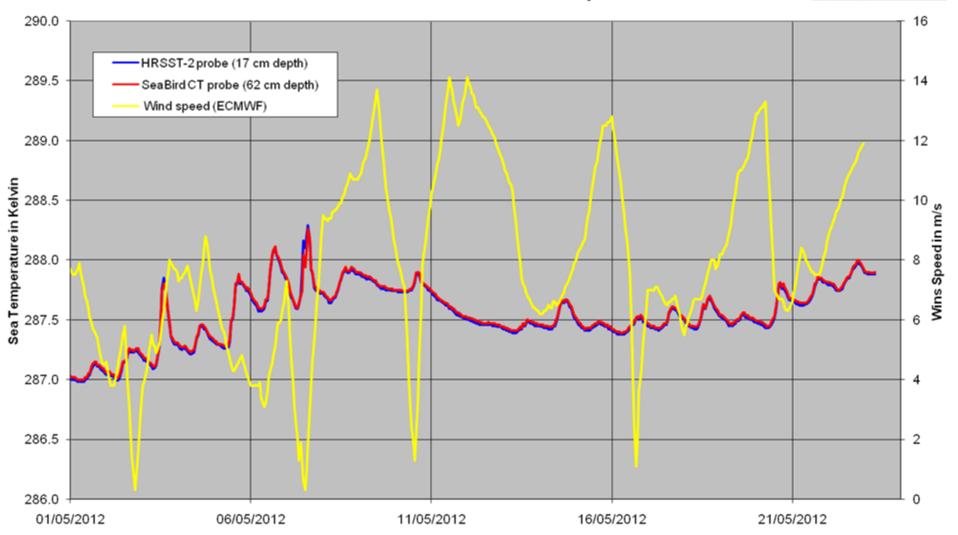
GHRSST recommendations agreed in 2008 + 1

- (1) Make hourly reporting universal
- (2) Report design depth in calm water to ± 5 cm
- (3) Report of geographical location to ± 0.5 km or better
- (4) SST accuracy to ±0.05 K or better, resolve 0.01 K
- (5) Use NetCDF CF-1.3
- (6) Report of the time of SST measurement to ± 5 minutes
- (7) No requirement to report on or close to integer hours
- (8) (Extra) Report estimate of absolute accuracy



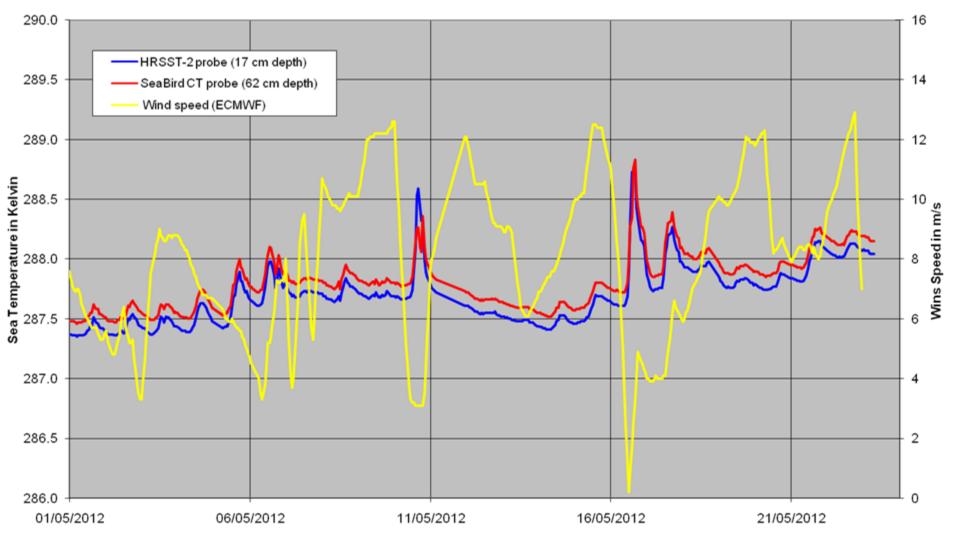
Progress to date

- Over 300 HRSST drifters have been deployed
 - Mainly by ESURFMAR and Meteo France
 - Report SST to 0.01C using BUFR
- Mostly HRSST-1s
 - Same SST sensor as before, just report to higher resolution
- HRSST-2s now being deployed
 - Better digital sensor module: demountable to facilitate traceable calibration
 - USD1k upgrade cost at present
- SPURS drifter fleet being recruited


Non-HRSST via HRSST

HRSST-2 calibration issues

Sea Temperature Measurements SVP-BS drifter WMO 6200505 - May 2012



HRSST-2 calibration issues

Sea Temperature Measurements SVP-BS drifter WMO 6200513 - May 2012

GHRSST meeting (Mar 12): DBCP response and next steps

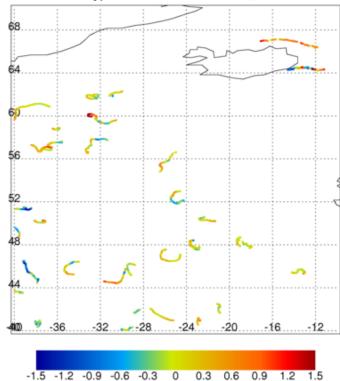
- Agreed to establish joint pilot project (PP-HRSST), ends 2014
- Need to identify areas that will provide large number of matchups in shortest possible time
- These areas to be of interest to existing buoy operators as they will pay most of the cost
- ESURFMAR now routinely deploying HRSST-1 drifters
 - More than 180 deployed to date, mostly in N Atlantic, some in Indian Ocean
 - Report with increased resolution but not accuracy
 - Report in BUFR
- PP-HRSST funds being used to help Met Office to upgrade to high accuracy HRSST-2 drifters
- Need to get feedback from GHRSST asap
- Need to get follow-on funding through joint GHRSST/DBCP proposals

HRSST buoys: Initial GHRSST analysis

Gary Corlett, Sasha Ignatov, Matt Martin, Chris Merchant and Peter Minnett

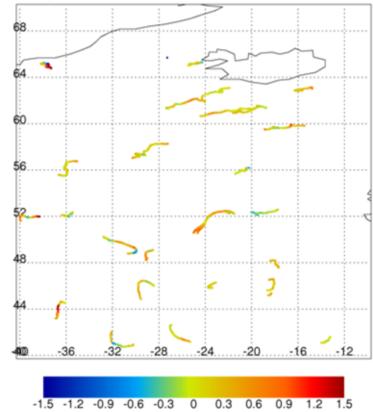
Activities so far

- Matt Martin (Met Office): matchups with FOAM/OSTIA
 - Model/analysis foundation SST
- Gary Corlett (University of Leicester): matchups with AATSR v2.1
 - Satellite skin SST
- Sasha Ignatov (NOAA) and Peter Minnett (RSMAS): matchups with VIIRS v5.3
 - Satellite skin SST


OSTIA/FOAM

Matt Martin

Preliminary comparison of SST from the new and old type of surface drifters with operational FOAM output


- Data used in the comparison:
 - Comparing the operational FOAM model output 1-day SST forecast (before assimilation) with the surface drifters.
 - For a 10 day period (8th 17th Feb 2012).
 - Selected a region where most of the new type of drifters are:
 - 70W -> 10W, 40N -> 70N.
- Caveats to bear in mind when looking at the results:
 - Despite reasonable numbers of obs (~9300 of the old type, ~6400 of the new type), the number of independent obs is fairly small (only a limited number of actual drifters, each of which reports many times).
 - Difficult to distinguish model errors from observation errors.
- Overall summary:
 - old drifter obs types have a much smaller mean error than the new types (+0.02 vs +0.26).
 - new drifter obs types have a slightly smaller standard deviation than the old type (0.42 vs 0.44).

generic: mean obs - bkg: 2012/02/08 to 2012/02/17 6 depths: 0-0 filtered type: 53* extrema: -2.157, 2.611 mean: 0

© Crown copyright Met Office

generic: mean obs - bkg: 2012/02/08 to 2012/02/17 s: 6367 depths: 0-0 extrema: -2.777, 3.011 mean: 0.2552 rms: 0.506

AATSR Validation

Gary Corlett

AATSR Validation

- Compare AATSR SST-skin to drifter SST-depth
- Nearest pixel within 3 hrs. (correct for time difference using Embury et al., 2012)
- AATSR mission ended on 8th April 2012
 - Loss of communication with Envisat
- Limit analysis to:
 - $-70W \rightarrow 10W, 40N \rightarrow 70N.$
 - 1st September 2011 to 1st April 2012

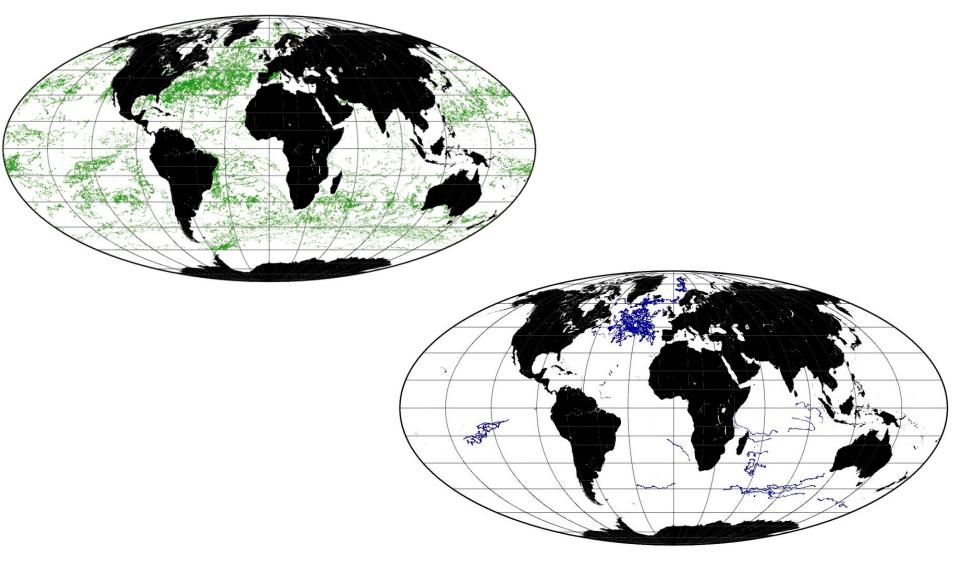
AATSR Results

Best retrieval				
1				

	Number	N2	N3	D2	D3
Non-HRSST					
Day	3176	-0.17 (0.29)		-0.14 (0.30)	
Night	3138	-0.28 (0.23)	-0.26 (0.22)	-0.23 (0.29)	-0.26 (0.26)
HRSST					
Day	404	-0.44 (0.34)		-0.37 (0.30)	
Night	555	-0.48 (0.35)	-0.43 (0.25)	-0.40 (0.27)	-0.41 (0.26)

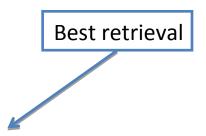
Skin to depth so expect difference of roughly -0.17 K

HRSST buoys warmer by 0.15 °C in North Atlantic; 0.2 °C for all regions



VIIRS Validation

Sasha Ignatov, Peter Minnett


Non-HRSST vs HRSST distributions

VIIRS – drifter statistics

	v5.3 non- HRSST buoys		
IDPS SST2b night			
median	-0.292		
sd	0.601		
mad	0.414		
count	50561		
IDPS sst3b night			
median	-0.156		
sd	0.531		
mad	0.282		
count	50561		

	V5.3 HRSST			
	buoys			
IDPS SST2b night				
median	-0.543			
sd	0.702			
mad	0.346			
count	2404			
IDPS sst3b night				
median	-0.363			
sd	0.590			
mad	0.234			
count	2404			

Summary

- Very small number of match-ups so far
- Initial results show warm bias of 0.15-0.2 °C compared to existing drifters
 - Lower noise
- Work ongoing to
 - Expand number of matchups (add MODIS & AVHRR)
 - Compare to ARC SSTs (best satellite SSTs)
 - Compare HRSST and non-HRSST drifters
 - Investigate other features (e.g. drogue)

Where would be the most important deployment areas?

- Canary Islands: area of the Aquarius surface salinity validation campaigns (SPURS); effects of Saharan Air Layer and aerosols on infrared SSTs
- 2. SE-Asia: high water vapor and periodic smoke aerosols from forest fires
- Upwelling areas: anomalous air-sea temperature differences; surface flow divergence tends to reduce buoys drifting into upwelling areas
- 4. High Latitudes: very low water vapour content; anomalous air-sea temperature differences)

 The effects of the higher quality might be best seen in the connection with the SPURS campaign

Next steps

- Build the PP-HRSST team
 - Panel needs to appoint chair and vice-chair
 - Recruit members from science, industry and GHRSST
- Attempt to resolve calibration issues
 - Fully demountable sensor module to allow user calibration, in first instance at least
 - Request further GHRSST diagnostic analyses
 - Refine requirements definitions to manufacturers
- Seek additional funding from space community
 - At this stage no additional funding above agreed amount sought from Panel

Sentinel-3 E1: HRSST Drifter Project Phase 1

Launch - 3 to Launch + 15 months

- 1					
		^		-	_
	к	_			
		•	•		•

	Keuro				
Item 1 - upgrade drifters being bought by other agencies					
300 upgrades to HRSST x 1keuro	300				
Item 2 - outright purchase of drifters for own purpose					
100 HRSST drifters x 3.5keuro	350				
Deployment costs 100 x 0.5keuro	50				
Satcoms costs for 1.5 yrs: 100 x 1.5 x 0.2	30				
Item 3 - staff costs for implementation and analysis					
120 days x 0.35keuro	42				
Institute overhead @120%	50				
Travel and subsistence	8				
Item 4 - phase 1 workshop at ESA					
Costs for local host (ESA)	40				
Total (all items selected)	870				