

Analysis of Argos 3 Technology on Buoy Platforms

By L. Braasch, L. Centurioni, C. McCall Scripps Institution of Oceanography, La Jolla, California

Purpose of Study

- Controlled tests with same host controller for:
 - Argos 2
 - Argos 3
 - Iridium SBD
- Positive findings from Argos 3 and Iridium Pilot Projects
- Manufacturer participation within Iridium and Argos Pilot Projects
 - Uncertainty of Argos 3 implementation
 - Iridium SBD vs. Argos 3 power consumption
- Shortened Argos 2 drifter lifetime with Kenwood YTR-3000 PMT

Figure: Clockwise from Top Left: Argos 2, Iridium SBD, and Argos 3

SIO SVP: Float

- 15" Diameter Hull
- Injection molded ABS
- Re-sealable O-ring design
- 316 Stainless Steel band for sealing and impact protection

Figure: Injection molded re-sealable hull with sealing ring

SIO SVP: Controller

Onboard capabilities:

- GPS Module
- Temperature and Strain gauge
- Real Time Clock and Calendar (RTCC)
- Non-volatile memory (EEPROM)

Support of:

- Argos Kenwood YTR-3000 PMT
- Iridium 9602 SBD Modem
- Honeywell HPB Barometer
- Additional external devices

Figure: In-house developed micro-controller

Setup: All systems

- SIO controller
 - SVP sensor payload:
 - Temperature
 - Strain gauge
 - Battery voltage
- Sealed in SIO hull with an O-ring
- Placed on roof at SIO
 - Placed in 5 gallon bucket of water for cooling
- 2.5 Amp-hour battery pack
 - 8 AA-cell Alkaline batteries in series

Figure: Clockwise from Top Left: Argos 2, Iridium SBD, and Argos 3

Battery Pack

- Endurance Test Battery Pack
 - 2.5 Amp-hour capacity
 - 8 Alkaline AA-cell batteries in series
- Typical SVP Battery Pack
 - 56 Amp-hour capacity
 - 4 parallel strings of 8 Alkaline Dcell batteries in series
 - 70 Amp-hour capacity
 - 5 parallel strings of 8 Alkaline Dcell batteries in series

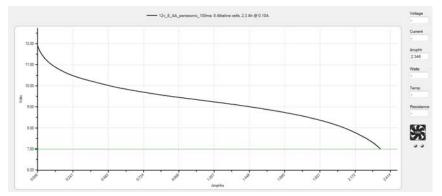


Figure: AA-cell discharge curve at 100mA constant draw, 2.35Ah¹

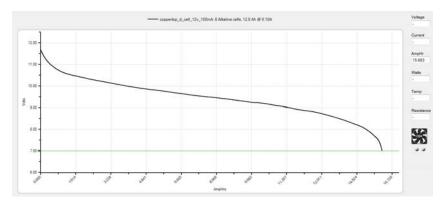


Figure: D-cell discharge curve at 100mA constant draw, 15.68Ah¹

- SVP payload
 - Sensors:
 - Temperature
 - Strain gauge
 - Battery voltage
 - 15 minute sensor observations
- Modem configuration
 - Kenwood YTR-3000 PMT in PTT mode
 - Recommend settings by CLS for PTT operation
- Antenna
 - Argos 2 capable by Hirschmann
 - Wide band Tetra specification
 - 380 430 MHz
 - 808 870 MHz

Table: Kenwood YTR-3000 configuration for Argos 2 PTT

	Argos 2
YTR-3000 Mode	PTT
Transmission mode	Α
BPSK Transmitter	1 watt
GMSK Transmitter	Disabled
H WUP	Disabled
Receiver	Disabled
Interactive-Ack	N/A
Pseudo-Ack	N/A
Nb tries for Pseudo-Ack	N/A
Repetition Rate	90 seconds
GPS option	N/A
Checksum	No

- SVP payload
 - Sensors:
 - Temperature
 - Strain gauge
 - Battery voltage
 - 15 minute sensor observations
- Modem configuration
 - Kenwood YTR-3000 PMT in PTT mode
 - Recommend settings by CLS for PTT operation
- Antenna
 - Argos 2 capable by Hirschmann
 - Wide band Tetra specification
 - 380 430 MHz
 - 808 870 MHz

Table: Kenwood YTR-3000 configuration for Argos 2 PTT

	Argos 2
YTR-3000 Mode	PTT
Transmission mode	A
BPSK Transmitter	1 watt
GMSK Transmitter	Disabled
H WUP	Disabled
Receiver	Disabled
Interactive-Ack	N/A
Pseudo-Ack	N/A
Nb tries for Pseudo-Ack	N/A
Repetition Rate	90 seconds
GPS option	N/A
Checksum	No

- SVP payload
 - Sensors:
 - Temperature
 - Strain gauge
 - Battery voltage
 - 15 minute sensor observations
- Modem configuration
 - Kenwood YTR-3000 PMT in PTT mode
 - Recommend settings by CLS for PTT operation
- Antenna
 - Argos 2 capable by Hirschmann
 - Wide band Tetra specification
 - 380 430 MHz
 - 808 870 MHz

Table: Kenwood YTR-3000 configuration for Argos 2 PTT

	Argos 2
YTR-3000 Mode	PTT
Transmission mode	Α
BPSK Transmitter	1 watt
GMSK Transmitter	Disabled
H WUP	Disabled
Receiver	Disabled
Interactive-Ack	N/A
Pseudo-Ack	N/A
Nb tries for Pseudo-Ack	N/A
Repetition Rate	90 seconds
GPS option	N/A
Checksum	No

- SVP payload
 - Sensors:
 - Temperature
 - Strain gauge
 - Battery voltage
 - 15 minute sensor observations
- Modem configuration
 - Kenwood YTR-3000 PMT in PMT mode
 - Default PMT configuration except:
 - GMSK transmitter
 - H_WUP pin
 - Pre-loaded with Orbital parameters and PMT location for satellite pass prediction

Table: Kenwood YTR-3000 configuration for Argos 3 PMT

	Argos 3
YTR-3000 Mode	PMT
Transmission mode	С
BPSK Transmitter	1 watt
GMSK Transmitter	Disabled
H WUP	Disabled
Receiver	Enabled
Interactive-Ack	Enabled
Pseudo-Ack	Enabled
Nb tries for Pseudo-Ack	5
Repetition Rate	30 seconds
GPS option	Disabled
Checksum	Enabled (FCS)

Antenna

 Argos 3 design used by Clearwater Instrumentation

- SVP payload
 - Sensors:
 - Temperature
 - Strain gauge
 - Battery voltage
 - 15 minute sensor observations
- Modem configuration
 - Kenwood YTR-3000 PMT in PMT mode
 - Default PMT configuration except:
 - GMSK transmitter
 - H_WUP pin
 - Pre-loaded with Orbital parameters and PMT location for satellite pass prediction

Table: Kenwood YTR-3000 configuration for Argos 3 PMT

	Argos 3
YTR-3000 Mode	PMT
Transmission mode	С
BPSK Transmitter	1 watt
GMSK Transmitter	Disabled
H WUP	Disabled
Receiver	Enabled
Interactive-Ack	Enabled
Pseudo-Ack	Enabled
Nb tries for Pseudo-Ack	5
Repetition Rate	30 seconds
GPS option	Disabled
Checksum	Enabled (FCS)

Antenna

 Argos 3 design used by Clearwater Instrumentation

- SVP payload
 - Sensors:
 - Temperature
 - Strain gauge
 - Battery voltage
 - 15 minute sensor observations
- Modem configuration
 - Kenwood YTR-3000 PMT in PMT mode
 - Default PMT configuration except:
 - GMSK transmitter
 - H_WUP pin
 - Pre-loaded with Orbital parameters and PMT location for satellite pass prediction

Table: Kenwood YTR-3000 configuration for Argos 3 PMT

	Argos 3
YTR-3000 Mode	PMT
Transmission mode	C
BPSK Transmitter	1 watt
GMSK Transmitter	Disabled
H WUP	Disabled
Receiver	Enabled
Interactive-Ack	Enabled
Pseudo-Ack	Enabled
Nb tries for Pseudo-Ack	5
Repetition Rate	30 seconds
GPS option	Disabled
Checksum	Enabled (FCS)

Antenna

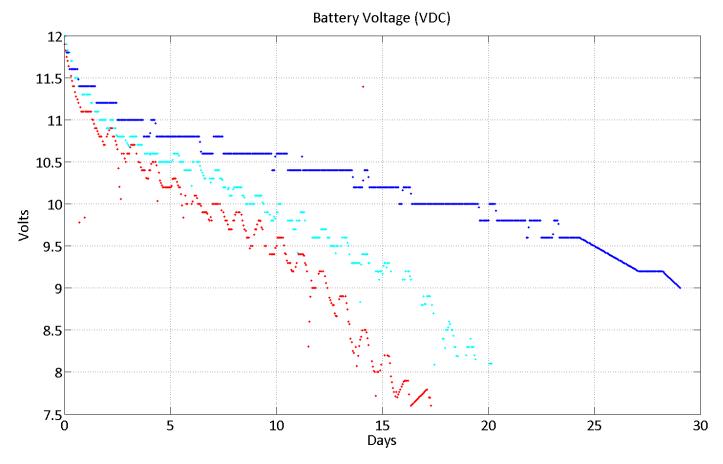
 Argos 3 design used by Clearwater Instrumentation

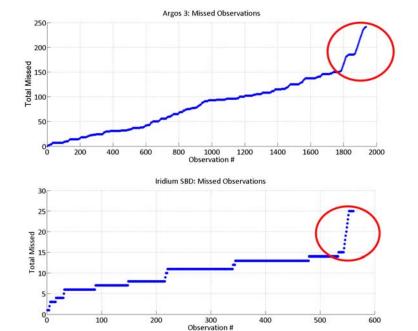
Setup: Iridium SBD

- SVP payload
 - Sensors:
 - Temperature
 - Strain gauge
 - Battery voltage
 - GPS
 - 1 hour sensor observations
 - Mandatory 30 second GPS timer
- Modem configuration
 - Iridium 9602
 - 1 hour transmission schedule
- Antenna
 - Dual element by Hirschmann
 - Active GPS
 - Certified Iridium

Figure: Electronics package for Iridium SBD test system

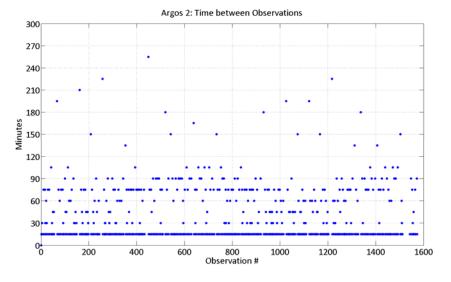
Battery Endurance




Figure: System battery voltage vs. Time

Battery Endurance

- Sharp rise in missed observations at end of life
 - End of life biases all statistics due to short duration of test
- AA-cell pack behavior at end of life differs from D-cell packs
 - Argos 2 D-cell cutoff: 6.2 volts
 - Iridium SBD D-cell cutoff: 6.8 volts
- Statistics computed without end of life portion of dataset for all tests

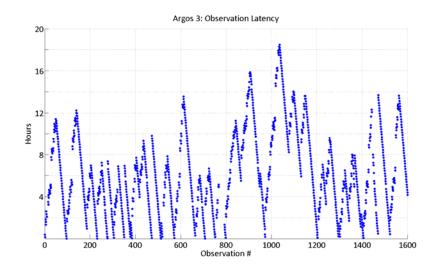

Figure: Sharp rise in missed observations near end of life for (top) Argos 3 and (bottom) Iridium SBD

Argos 2: Results

- Throughput
 - 29.6% of observations received¹
 - Average of 47.9 minutes between observations received²
- Latency
 - Maximum observation age was
 15 minutes from collection
 - Observation cycle
 - Argos ground station processing
- AA pack Endurance
 - 16 days

Figure: Minutes between observation vs. Observation count. Argos 2 resolution was an average of **47.9 minutes** between collected observations.

 $^{^{\}rm 1}$ Throughput computed as ratio of observations received to observations taken

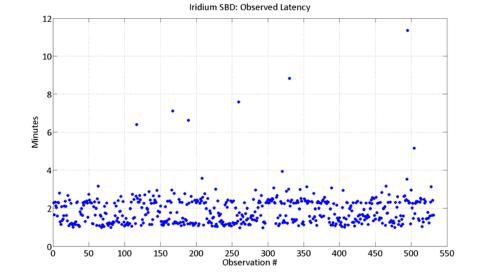

²Measured as time between unique observations as indicated by Argos satellite timestamp

Argos 3: Results

- Throughput
 - 90.9% of observations received
 - Argos 3 Interactive-Ack session
 - Downlink receiver active for average of 6.6 minutes per Argos 3 pass
 - FCS checksum
 - 93% Interactive-Ack pass
 - 86.2% Pseudo-Ack pass
- Latency
 - Average 6.2 hour latency¹
 - Maximum of 18.3 hours
 - First in First Out (FIFO) buffer
- AA pack Endurance
 - 20 days

Figure: Argos 3 hours of latency vs. Observation count. Average was **6.2 hours**, Maximum was **18.3 hours**

¹ Latency measured as elapsed time between sensor timestamp and Argos satellite timestamp


Iridium SBD: Results

- Throughput
 - 97.5% of observations received ¹
- Latency
 - Average latency of 1.89
 minutes²
 - Host system waiting for Iridium satellite lock
 - Iridium Gateway processing

24 days³

Figure: Iridium SBD minutes of latency vs. Observation count. Average latency was **1.89 minutes**

¹ Ideal test conditions due to constant line of sight to the sky throughout testing

² Elapsed time between GPS sensor timestamp and file timestamp on SBD server at SIO

³ Dependant on GPS and transmission management implemented by the host system

Argos 3 Reliability

- Failure to lock Argos 3 downlink signal
 - Satellite pass prediction would be affected in the field
 - Orbital parameters valid for 2 months
 - PMT location valid for 3-5 days for a drifter
 - Datasets were dropped due to limited buffer capacity
 - Transmission protocol limited to Pseudo-Ack
 - Can be caused by de-tuning of antenna at downlink frequency

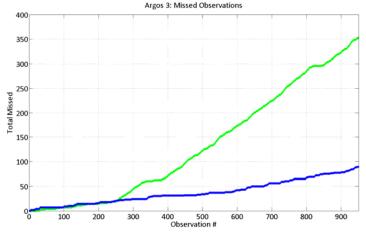


Figure: Number of missed observations for a well performing Argos 3 (blue) and problematic Argos 3 (green)

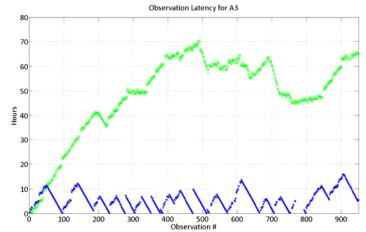


Figure: Observation latency in hours for a well performing Argos 3 (blue) and problematic Argos 3 (green)

Findings

Argos 2

- Shortest lifetime
- Lowest throughput
 - Improve by passing historical observations
 - i.e. SVP-B type drifters

Argos 3

- Performance vs. Argos 2
 - 25% battery endurance increase
 - 207% throughput increase
- Argos 3 Antenna
 - Custom designs
- Latency
 - Unable to provide near realtime data using PMT buffer management
- Downlink receiver
 - Active for average of 6.6 minutes per Argos 3 pass
 - Interactive-Ack handshaking

Iridium SBD

- Performance vs. Argos 2
 - 50% battery endurance increase
 - 229% throughput increase
- AA-pack cutoff voltage
 - Less severe on D-cell battery packs in the field
 - 6.8 volt Iridium SBD cutoff with 40 cell D-cell pack

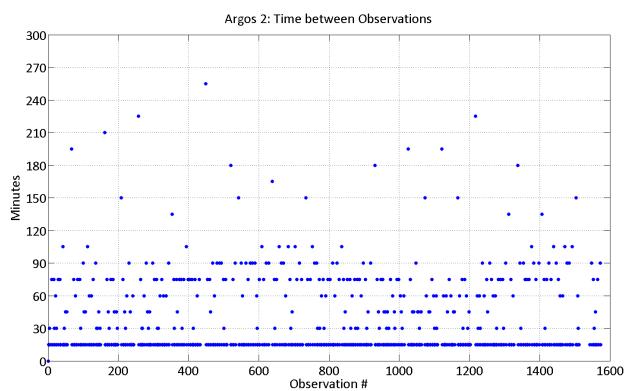
Roadmap

Argos 2

- End of Life
 - Kenwood YTR-3000 PMT as PTT
 - Double battery packs for Kenwood YTR-3000 based Argos 2 fleet
- Future developments should utilize Argos 3 and/or Iridium SBD

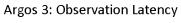
Argos 3

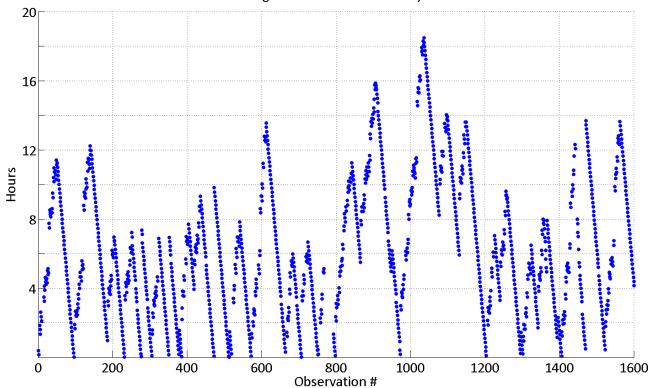
- Downlink receiver power consumption
 - Disable Interactive-Ack to manually set downlink receiver
 - CLS recommends **60 seconds**
 - Scale with additional Argos 3 satellites
- Need for robust certified antenna
 - Delays to development
 - Potential for buoy failure
- Improve Latency
 - Last In First Out (LIFO) buffer
 - Random mode
- Backup mode behavior
 - Special applications i.e. Hurricane
 Drifters


Iridium SBD

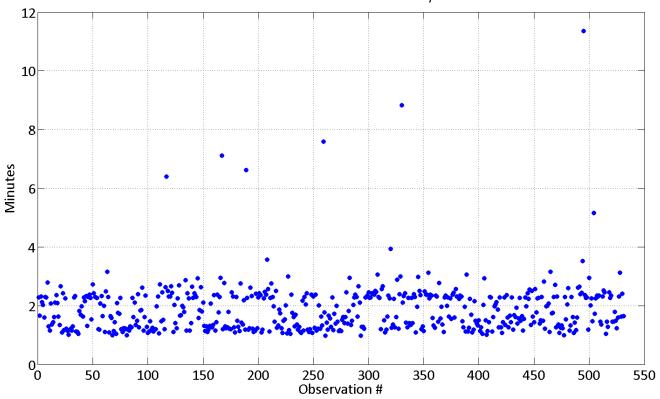
- Improve battery performance
 - Iridium transmission and GPS management
- Throughput
 - Historical observations

A2: Resolution




Figure: Argos 2 time between observations vs. Observation count Average time between received observations was **47.9 minutes**. **29.6%** of observations were received by Argos constellation

A3: Latency


Figure: Argos 3 Observation latency vs. Observation count Argos 3 average latency was **6.2 hours** with a peak of **18.3 hours**

SBD: Latency

Figure: Iridium SBD observation latency vs. Observation count Average Iridium SBD message latency was **1.89 minutes**