Liquid Robotics, Inc.

Long Term Autonomous Ocean Remote Sensing Utilizing the Wave Glider

Liquid Robotics

Mission	Change the economics of ocean data gathering and revolutionize how the world accesses our oceans	Awards
Business focus	Ocean data services provider and developer of the Wave Glider®	WORLD ECONOMIC FORUM
Market traction	Over 130 Wave Glider systems shipped globally	2013
Target markets	DoD, Oil & Gas, Science & Oceanography	RBR
Oil & Gas	Joint venture with Schlumberger	
Employees	90+	50
Investors	VantagePoint Capital Partners and Schlumberger	INCIDENT DANIONATIVE COMPANIES
Incorporated	2007	
Locations	California, Hawai'i, Washington DC	Global 200 entern

Wave Glider[®] Technology

Systems, Operations and Performance

©2012 Liquid Robotics, Inc/1329 Molfett Park Drive, Sunnyvale, CA 94089, USA. All Rights Res With the second secon

The Wave Glider

Float

•Solar Panels

Navigation

Communications – Iridium or cellularPayloads

Sub

•Wave Powered

•Forward Thrust

•Rudder Control

•Payloads

Speed

•Averages 1 to 1.5 knots - STW

How It Works

3 U.S. and 9 foreign patents issued. 20 U.S. Provisional applications, 42 foreign applications.

How It Works

System Architecture - Modular

Modular design

encourage sensor
integrations
simple maintenance

•Custom algorithm development

Available Sensors

Marine Operations From Ships or Small Craft

©2012 Liquid Robotics, Inc. 1329 Moffett Park Drive, Sunnyvale, CA 94089, USA. All Rights Reserved.

Launch and Recovery with Minimum Equipment

©2012 Liquid Robotics, Inc. 1329 Moffett Park Drive, Sunnyvale, CA 94089, USA. All Rights Reserved.

Wave Glider Management System (WGMS)

©2012 Liquid Robotics, Inc. 1329 Moffett Park Drive, Sunnyvale, CA 94089, USA. All Rights Reserved.

Station Keeping

Line Following Array Demonstration

Liquid Robotics Pacific Crossing (PacX)

34

San Francisco to Australia & Japan

© 2011 Europa Technologies US Dept of State Geographer © 2011 Google Data SIO, NOAA, U.S. Navy, NGA, GEBCO

17°23'27.98" N 160°15'01.53" W elev -17864 ft

Google[®]earth

Eve alt 6844.97 mi

PacX Mission

The Challenge

- 4 Wave Gliders
- 330+ Days
- 2,250,000 Data Points
- 8,000+ Nautical Miles
- Launched November 17, 2011

Sensors

- Seabird GPCTD/DO
- Airmar PB200 Weather Station
- Datawell MOSE-G Wave Sensor
- Turner C3 Fluorometer

MBARI M1 (NDBC 46092)

- All 4 vehicles circumnavigated M1 for two weeks
- Nov. 23 to Dec. 9, 2011
- Also compared wave data to NDBC 46236 (Scripps)

M1 Circumnavigation

- Ideally, Wave Gliders & M1 would be collocated
- Operation Considerations result in average 4.7 nmi separation
- High spatial variability
- wind speed
- wind direction
- Lesser spatial variability
- water temperature
- air temperature

Seabird GPCTD/DO

- Conductivity, Temperature, Depth, and Dissolved Oxygen
- Mounted in Wave Glider Float
- 8 sample average returned every 10 minutes

Salinity

- Salinity within the bay is expected to be uniform
- Agreement between gliders is excellent
- Confirmed that the CTD on M1 was not cleaned since July of 2011.
- Percent difference for the majority of the measurements is less than 0.5.

Water Temperature

- Temperature variability in Monterey Bay is greater than that of salinity
- Temperature spread of about 4 degrees C.
- Average percent difference of 2.5%

Dissolved Oxygen

- Wave Glider sensor agreement is excellent
- M1 O2 sensor Aanderra Optode
- Sensor had not been cleaned for many months.
- The instrument started to foul in March of 2011

MBARI Dissolved Oxygen Sensor

GPCTD Conclusion

- The float mounted SeaBird GPCTDs exhibited excellent performance while in Monterey Bay.
- For the core variables of salinity and temperature, average percent differences relative to M1(NDBC 46092) were less than 0.5 and 3 respectively.
- The spatial variability of temperature and the positions of the Wave Gliders relative to M1 could explain these small differences.
- Without the measurements of dissolved oxygen at M1 as a reference, the agreement in dissolved oxygen among the gliders becomes the metric for evaluation of performance

Airmar PB200 Met Station

- Ultrasonic transducer based measurement
- Measures
 - Air Temperature
 - Barometric Pressure
 - Wind speed & direction
- Mounted on 1m tall mast
- 1 Hz Sampling Rate
- 10 minute averages returned every 10 minutes

Wind Speed & Direction

Wind speed and direction most affected by spatial variability

Air Temperature & Barometric Pressure

Airmar PB200 Conclusions

- The Airmar PB200 showed mixed results when compared to similar data at M1.
- The lack of agreement attributed to two factors:
- **Spatial Variability** Monterey Bay wind speed and direction often show high spatial variability.
- **Instrument Height** M1 anemometer: mounted 4 meters above sea level Airmar PB200: mounted 1m above sea level.
- Percent differences
- Wind speed and direction between 0 and 200
- Air temperature measurements less than 1 degree C
- Barometric pressure less than 0.5% difference

Turner C3 Fluorometer

- Three optical channels
 - Chlorophyll-A
 - Crude Oil
 - Turbidity
- Mounted in surface float
- 2 minute sampling rate
- Group of 7 samples returned every 14 minutes

Turner C3 Fluorometer

Notice the coincidental depression of the signal happening around midday. This presumably can be attributed to photo inhibition.

Turner C3 Conclusions

- Direct comparison of a fluorescence signal from the vehicles and M1 is not possible without a coincidental calibration
- Fluorscence signals were normalized by the maximum possible signal for the respective instrument
- Given the separation distances between M1 and the vehicles (3-8 km) as well as the spatial variability of chlorophyll in the bay, one would not expect the measurements to agree too closely.
- Strong agreement in known photoinhibition cycle between both sensors

MOSE-G Wave Sensor – NDBC 46236

- GPS based wave motion sensor
- Measures
 - Significant wave height
 - Average period
 - Peak period
 - Peak direction
- 2 Hz sampling rate
- 512 point average every 30 minutes

MOSE-G Wave Sensor

Note the improved agreement after remote firmware upgrade performed on December 7th

MOSE-G Wave Sensor

The mean percent difference in dominant and average period between the Wave Gliders and NDBC 46236 was 18 and 10 respectively.

MOSE-G Conclusions

- The Datawell MOSE-G waves sensor showed mixed results when compared to NDBC 46236.
- Wave direction initially determined to be 90 degrees from NDBC 46236.
- This prompted corrective modification of the firmware on the instrument.
- Average percent differences in wave direction decreased from 118 to 11 percent.
- Future comparisons showed improved performance of the MOSE-G sensor

Severe Storm Assessment

Sea Storm Assessment

3-10 Feb 2012 - Lat. = 28.3011 ° N Lon. = 145.2055 ° W

Wave Heights as high as 8m Dominant Wave Periods 10-14 seconds

The trio from Edmonton, Canada hit a series of storms while sailing from Mexico to Hawaii and high winds snapped their mast about 300 miles from their destination

A container ship in the area was diverted by USCG to rescue a stricken sailing family "Wind blowing 50 knots and the seas rolling at 20-25 feet"

PacX Results – Severe Pacific Storm

3-10 Feb 2012 - Lat. = 28.3011 ° N Lon. = 145.2055 ° W

Pressures as low as 980 mb Category 2 Hurricane = 965-979 mb Verified against SSV Robert C Seamans

Sustained Wind Speeds up to 30 knots Gusts = 60+ Knots Verified against ASCAT satellite

Conclusions

- Wave Glider is a suitable and highly efficient platform for the observation of sea surface and lower atmospheric conditions over extended sampling periods.
- The Wave Glider could quickly and efficiently increase the operational density of ocean observations.
- While additional surveys are necessary to understand reasons for the disagreement among certain variables, the results of these comparisons are quite encouraging.
- Due to the inability to sample the same waters as the reference mooring it is nearly impossible to determine what percentage of the differences are due to spatial variability.

- Papa Mau should arrive in Australia around middle of October, 2012
- The Japanese Team should arrive in January, 2012
- Then? Should we circumnavigate Antarctica?

Wave Glider

Persistent

•Year long missions without fuel or maintenance

Mobile

Travel to op area, patrol, and returnCapture spatial and temporal dynamics

Real-Time

•Data transmitted via satellite connection

Proven

More than 130 systems shippedOver 250,000 operational miles

