

# Wave measurements from drifters PP-WMD

#### Report to DBCP-XXVII























#### JCOMM Technical Workshop on Wave Measurements from Buoys, 2008







- Deep ocean wave measurements needed for
  - Validation of models
  - Validation of satellite observations
  - Process studies (e.g. for hurricanes and other extreme events)
- An <u>undrogued</u> drifter is a good wave follower and might carry an attitude sensor, e.g. GPS, pitch-roll package
- Presentation of 'First 5' as minimum reporting standard
  - Energy spectrum + first four spectral moments
  - See http://www.act-us.info/download/workshop\_reports/ACT\_WR07-03\_Wave\_Sensor.pdf
- Need for careful evaluation of wave drifters
- Proposal for DBCP Pilot Projects





# Wave measurements - the 'Big 3'

- Three time series needed
  - in x, y and z or their derivatives
- No buoy is a perfect wave follower
- Need to compensate for buoy transfer function



# Example Low cost technologies to measure the Big 3













- Not always low cost!
- Energy hungry
  - Sensor itself
  - In situ processing
  - Communications





# What data do we need to report?

- 'First 5'
  - Power spectrum:
    coefficients as a
    function of frequency
    band (S(f))
  - Directional spectrum:
    first two pairs of
    coefficients of spectral
    moments (a<sub>1</sub>, b<sub>1</sub>, a<sub>2</sub>, b<sub>2</sub>)
- Work by O'Reilly (Scripps), Jensen (USACE) and at NDBC
  - Development of IOOS







# Need for careful intercomparison









#### **Surface Wave Spectra**







#### **GPS basics - errors**

| Sources of User Equivalent Range Errors (UERE) |         |               |
|------------------------------------------------|---------|---------------|
| Source                                         | Effect  | Time constant |
| Ionospheric effects                            | ± 5 m   | 10 min        |
| Ephemeris errors                               | ± 2.5 m | 1 hour        |
| Satellite clock errors                         | ± 2 m   | 5 min         |
| Multipath distortion                           | ± 1 m   | 100 sec       |
| Tropospheric effects                           | ± 0.5 m | 10 min        |
| Numerical errors                               | ± 1 m   | White noise   |

Power spectrum of most errors lies well below ocean wave power spectrum





# **Practical systems**

- JMA/JAXA protoype wave buoy
  - GPS World, May 2005
  - HP filter to separate out wave signal
  - Claimed accuracy of a few cm
  - US Patent 6847326



- Datawell wave buoy DWR-G
  - Sea Technology, Dec 2003
  - Probably similar technique









# **Practical systems**

#### Continental Control Design, Inc.

- Cell Phone GPS receiver 3D orbital velocities
  - Microcontroller does the spectral analysis
  - Iridium SBD modem ships data globally
    - Hull is polycarbonate ice cream ball





#### **Practical systems**

# KOGA buoy (5 m) - Datawell MOSE-G KOGA Scripps (0.75 m) - GPS





#### Significant wave height $(4 \times \sigma)$











#### Objectives

- Evaluate feasibility of wave measurement from drifters
- Explore in particular use of GPS as the cost-effective means of yielding 2-dimensional wave spectra
- Prove the technology by measurements and intercomparison with existing trusted wave measurement technologies
- Deploy up to 50 wave measurement drifters within the framework of the pilot project
- Establish confidence in user community in the validity of wave measurements from drifters

#### Approved by DBCP XXIV

- Up to 3 years
- Up to \$30k 'seedcorn' funding







#### **Steering Committee Membership**

David Meldrum (Chair) (<u>David.Meldrum@sams.ac.uk</u>) Val Swail (val.swail@ec.gc.ca) Peter Niiler (pniiler@ucsd.edu) Jean Bidlot (jean.bidlot@ecmwf.int) Hester Viola (viola@jcommops.org) Andy Sybrandy (asybrandy@pacificgyre.com) Bill Burnett (Bill.Burnett@noaa.gov) Bob Jensen (Robert.E.Jensen@usace.army.mil) Tony Chedrawy (tony@metocean.com) Jeff Wingenroth (<a href="mailto:jw@technocean.com">jw@technocean.com</a>) Eric Terrill (eterrill@ucsd.edu) Hans Graber (hans@miami.edu) Harry Pannekeet (sales@datawell.nl) Graeme Ball (g.ball@bom.gov.au) lan Young (iyoung@swin.edu.au Diane Greenslade (d.greenslade@bom.gov.au)







- Request Panel to continue with PP-WMD
- Revise PP membership
- Move operational focus to Scripps
- Test GPS sensors on PP-WET platforms
- Investigate ways of characterising sensor inside SVP

