

Science activities and interest in SST from drifting buoys

Andrea Kaiser-Weiss

Outline

- 1. Motivation for SST measurements
- 2. Measuring SST
- 3. Definition of SST
- 4. GHRSST service
- 5. GHRSST interest in drifting buoys

GHRSST mission:

provide SST to a massive user community

Met Office Web Map Service > OSTIA Anomaly > sea_surface_temperature_anomaly Time: 2010-09-06T12:00:00.000Z powered by : GODIVA2

Motivation: Storms

Motivation: Rainfall variability

Giannini, Biasutti, Held and Sobel, Climatic Change, 2008

Motivation: Climate change

1961-1990 average: 13.97 C

Source: BoM graphics from HadCRUT3v data

Global Annual Mean Surface Temperature Anomaly (base 1961-90)

Andrea Kaiser-Weiss: GHRSST Science Activities and interest in SST from drifting buoys. DBCP-XXVI and Argos-JTA-XXX 27/10/2010

Motivation: Oceanography

Surface Trend (°C/10 yrs) 1950-2010

Source : BoM graphics from

HadCRUT3v data

SST related science in Oceanography:

- air/sea flux
- currents, eddies, fronts
- AMO
- trends in all of the above

Thermohaline Circulation

Andrea Kaiser-Weiss: GHRSST Science Activities and interest in SST from drifting buoys.

DBCP-XXVI and Argos-JTA-XXX 27/10/2010

Measuring the SST

- Polar Orbiting infrared has high accuracy & spatial resolution
- Geostationary infrared has high temporal resolution
- Microwave Polar orbiting has *all-weather capability*
- In situ data provide the reference in all weather conditions

Definitions of SST

Andrea Kaiser-Weiss: GHRSST Science Activities and interest in SST from drifting buoys.

DBCP-XXVI and Argos-JTA-XXX 27/10/2010

\$28 Million invested by the international GHRSST community

L2P: common format with uncertainty

GHRSST service:

Apparent vs. true satellite SST uncertainy

Summary

1. GHRSST mission: to provide SST to operational users and a to a massive science community

- 2. GHRSST priority: decreasing uncertainties in satellite SST's (SD and regional bias)
- 3. Drifting buoys for: empirical regression, uncertainty estimates, regional SST bias
- 4. Improvements sought: accuracy, resolution and pre/post-deployment calibration system monitoring

