

ARGOS REAL-TIME ANTENNA UPGRADE PROJECT

OBJECTIVE

ESTABLISH AN OPTIMIZED AND RELIABLE GLOBAL NETWORK OF REAL-TIME ANTENNAS WHICH MINIMIZES THE DELIVERY TIME OF ARGOS PTT/PMT DATA

TODAY'S PRESENTATION

- PRINCIPLES
- IMPORTANT FEATURES OF A R/T ANTENNA
- THE CURRENT NETWORK WHY UPGRADE IT ?
- THE UPGRADE APPROACH
- THE CURRENT PLAN

• IMPACT TO DBCP/SIMULATION RESULTS

PRINCIPLES

• R/T = "BENT PIPE" TRANSMISSION

• GEOMETRY: THE SATELLITE MUST SEE ARGOS XMTR AT THE SAME TIME THE ANTENNA SEES THE SATELLITE

• VISIBILITY CIRCLE / ACCESSIBILITY CIRCLE

VISIBILITY/ACCESSIBILITY CIRCLE

ACCESSIBILITY CIRCLE RADIUS = \sim (2500 + 2100) = 4600KM

VISIBILITY AND ACCESSIBILITY CIRCLES

• Example: HRPT Station LM (Lima-METOP)

VISIBILITY AND ACCESSIBILITY CIRCLES

• Example: HRPT Station LM (Lima-METOP)

VISIBILITY AND ACCESSIBILITY CIRCLES

• Example: HRPT Station LM (Lima-METOP) with Argos Platforms

IMPORTANT FEATURES OF AN ARGOS R/T ANTENNA

- LOCATION: GEOPOSITIONED SO A HIGH PERCENTAGE OF PLATFORMS ARE IN ACCESSIBILITY CIRCLE
- <u>DISH + RCVR</u>: MAXIMIZE NUMBER OF SATELLITES

 CARRYING ARGOS FROM WHICH IT CAN

 CAPTURE THE "BENT PIPE" TRANSMISSIONS
- NETWORK READY: CAPABLE OF AUTOMATED ARGOS DATA

EXTRACTION AND QUICK DELIVERY TO

PROCESSING CENTERN

• OPERATIONAL: 24/7

OBAN, SCOTLAND
SEPTEMBER 27, 2010

TODAY'S NETWORK – 60 STATIONS

SOUNDS LIKE A LOT – WHY UPGRADE IT ?

- NON-UNIFORM & LIMITED MIX OF SATS THAT ARE RECEIVED – METOP/SARAL ARE NEEDED
- LOCATION/OPERATORS ARE NOT OPTIMUM
- DAYS IN OPERATION ARE NOT CONSISTENT
- % OF DATASETS RECEIVED vs. EXPECTED IS LOW
- DATA DELIVERY TIMES ARE VARIABLE AND NOT RELIABLE

"CREATE THE NETWORK WE NEED NOT JUST USE WHAT MIGHT BE AVAILABLE"

UPGRADE APPROACH

- UPGRADE A SUBSET OF EXISTING L-BAND ANTENNAS TO RECEIVE DATA FROM ALL SATELLITES (NOAA, METOP, SARAL)
- INSTALL NEW ANTENNAS AND/OR CONNECT TO OTHERS WHERE NEEDED
- CONDUCT SYSTEM STUDIES TO DEFINE CANDIDATE ANTENNAS – BUDGET LIMITED TO ~ 20
- IMPLEMENT OPERATIONAL AGREEMENTS WITH OPERATORS

SYSTEM STUDIES

WHAT WAS CONSIDERED:

- LOCATION/AVAILABILITY OF EXISTING STATIONS
- EXISTING SATELLITES (6) + SARAL & METOP-B
- APPLICATIONS WITH SENSITIVE DATA DELIVERY TIMES
- GEOGRAPHIC DISTRIBUTION OF MAIN APPLICATIONS & AREAS REQUIRING PRIORITY COVERAGE
- EXISTING STATIONS WHICH QUALIFY FOR UPGRADING TO ADEQUATE DISH SIZE TO ENSURE LINK BUDGETS
- NEW SARAL REAL-TIME STRATEGY (last 100 minutes)

ANTENNA SELECTION

- REFINE ANTENNA CHOICES BY ANALYZING DELIVERY TIME PERFORMANCE OF UPGRADE SCENARIOS WITH SIMULATION TOOL
- TOOL CALCULATES THE AVERAGE TIME FOR A PLATFORM TO DELIVER ITS DATA AS A FUNCTION OF:
 - THE ARGOS SATELLITE CONSTELLATION (real parameters, simulated SARAL)
 - THE REAL ANTENNAS OF THE NETWORK AND THEIR CHARACTERISTICS (locations, satellites tracked, elevation mask, average data delivery time, etc....)

ANTENNA SELECTION, cont'd

- SCENARIOS (typically 10 days) ARE RUN; DELIVERY TIMES ARE OBTAINED BY STEP-WISE ANALYSIS OF THE TIME EVOLVING CONFIGURATION:

 "Platform/Satellites Above/Stations Around"
- RESULTS DISPLAYED ON A 5° X 5° GRID

UPGRADE ACTIONS

- RCVR DEVELOPMENT NOAA/METOP/SARAL: Acceptance, Sept. 2010
- UPGRADE 3 CLS STATIONS WITH NEW RCVR: End of 2010
- UPGRADE 10 'NON-CLS' STATIONS: Planned for 2011
- PROCURE AND INSTALL NEW STATIONS(2): Planned for 2011
- UPGRADE 3/5 EXISTING AUSTRALIAN STATIONS: Ongoing

3 CLS STATIONS TO BE UPGRADED BY END 2010

THE 10 'NON-CLS' STATIONS FOR 2011 UPGRADING

3+ STATIONS FOR UPGRADING BY ESS

2 NEW STATIONS

IMPACT TO DBCP

Average delivery times in minutes –Existing Network WITHOUT Hyderabad (India) and WITHOUT Muscat (Oman)

Average delivery times in minutes - Existing Network WITH Hyderabad (India) but WITHOUT Muscat (Oman)

Average delivery times in minutes – Existing Network WITH Hyderabad (India) and WITH Muscat (Oman)

GLOBAL DATA TIME AVAILABILITY (IN MINUTES) WITH THE CURRENT ARGOS REAL-TIME NETWORK

GLOBAL DATA TIME AVAILABILITY (IN MINUTES) WITH THE ARGOS REAL-TIME NETWORK UPGRADED

OBAN, SCOTLAND
SEPTEMBER 27, 2010