

Wave Glider Autonomous Ocean Vehicle

The Wave Glider: A Mobile Buoy Concept for Ocean Science

J. Manley & T. Richardson: Liquid Robotics Inc. DBCP XXV – Paris – September 28, 2009

2009 Liquid Robotics Inc.

Wave Glider Overview

- Unique Two Part Vehicle:
 - Converts wave motion into thrust
 - Calm and rough seas
 - Thrust generation increases with sea state
 - Long mission durations possible
- Both a Buoy and a Vehicle
 - Travel to operation area
 - Return for maintenance
 - Patrol, survey or hold station
- It's Real:
 - Existing fleet has traveled over 42,000 nmi
 - Duration of longest mission, over 9 months
 - Science applications demonstrated

Wave Glider Operating Principle

Glider Wings Convert Wave Motion To Thrust

Glider is Protected from Surface Effects

Passive float is towed by the submerged glider.

Copyright 2009 Liquid Robotics Inc.

Operational in range of conditions

Sea State 0: 1/2 knot speed

Edge of Hurricane Flossy: 1 knot into 40-50 knot head winds

In typical sea conditions, Wave Glider makes 1.0 to 1.5 knots, independent of wave direction. Wave Glider maintains 0.25 to 0.50 knot headway under very calm conditions.

Proven Capability

Wave Glider Testing Milestones and Statistics					
Cumulative Mission Time	1906 days (~5.2 years)				
Cumulative Mission Miles	>42,100 nmi				
Longest Single Mission	247 days, as of 8/21/09				
Endurance (so far)					
Longest Single Mission	2150 nm; as of 8/21/00				
Distance (so far)	2150 nmi, as of 8/21/09				
Cumulative Miles on a Single	$6200 \text{ mm} = 23 \text{ of } \frac{9}{21} \frac{1}{00}$				
Vehicle (so far)	0200 mm, as of 8/21/09				
Max. Sustained Sea State for	SS6: 15+ ft seas, 40+ kt				
Vehicle Operations	winds				

Web Based User Interface

Secreteriat Parsed Outputs

	🚽 Local Time	Last Speed	Target WP	Desired Heading	Sub Heading	Path Heading	Batt V	Float Temp	ISS	Command Name	Command Reason	User Name	Lat	Long	Distan	nc
۱. 🕍	4/11/2008 1:55:0	0.724	6	288	299	323	13.5	84	5			🙎 Sys	19.973225	-155.863975	112.1	_
	4/11/2008 1:50:0	0.809	6	290	294	328	13.5	84	5			Sys	19.97242	-155.863328	124.5	
۱.	4/11/2008 1:45:0	0.451	6	291	290	234	13.56	84	5			🕵 Sys	19.971472	-155.862693	69.9	
۱ 🌬	4/11/2008 1:40:0	0.506	5	196	199	168	13.62	84	4			🕵 Sys	19.971843	-155.862153	78.3	
lone			-										Internet		€ 1000/	_

Wave Glider Testing April 2009, Monterey Bay

Watsonville (129) Pal

Station Keeping Comparison. WG: 50m M2: 1700m

WaveGlider Tsunami Warning

NOAA DART Buoy Test

- Provided redundant communications with bottom mounted sensor
- DART buoy 51407 off Kona coast
- Glider on station 08/03/09 to 08/23/09
- Transited with glider based payload
- Supported acomms to BPR
- Station keeping functionality demonstrated

Wave Glider Trial ADCP Deployment

- Successful system integration, Teledyne RDI 600 kHz Sentinel
- Series of tests to evaluate the ADCP performance and data quality
- Data below the glider validated
- Surface layers between the float and glider thought to be good quality

Compatible with typical instruments

- Water Column:
 - ADCP, conductivity/temp, hydrophone, pH, velocity
- Surface:
 - Waves, meteorology, *pCO2*, direct covariance flux,
- Shallow Water:
 - Flourometer, nutrients, DO, spectral irradiance, photosynthetically available radiation, optical absorption, zooplankton
- Other:
 - Mass Spectrometer, cameras, chemical sampling

OOI Sensors Deployed		Shallow Water	
		Fluorometer	81
		Nutrients	25
Water Column		Dissolved oxygen	8
Acoustic Doppler Current Profiler	39	Spectral irradiance	22
Conductivity/Temperature	210	Photosynthetically available radiation	20
Hydrophone	10	Optical absorption	31
Inverted echo sounder	5	Zooplankton sensor	13
nH	37		
Velocity single point	57	Bottom	
venuery, single point		Mass spectrometer	2
European		Seafloor temperature	
Where	10	Seismometer	13
Matacenicov	18	Camera	13
~0	36	Benthic flow	1
Cine and the first	10	Particulate DNA	1
pCO ₅ Direct covariance flux	36 10	Benthic flow Particulate DNA Vent chemistry	
		Chemical sampling	3
		Conference on the second se	

The OOI will provide free and open access to a core set of multidisciplinary sensors chosen by the community. The core sensor set was selected to address both the needs of the different disciplines of ocean sciences and to provide the capability to sample the full water column from the sea floor to the sea surface. Sampling capabilities are designed to address the requirement to sample across a broad range of time and

OOI Sensors Deployed presented at OceanObs'09 - Venice, Sep 21-25 2009

Wave Glider Status: Demonstrated In Development

Wave Glider Recap

Status Quo:

- Battery life limits autonomous vehicle range and payload
- Autonomous Marine Vehicles are mostly used near ships
- Ocean moorings are expensive to maintain

Wave Glider:

- 100% energy harvesting
- **Continuous communications**
- **Operational area: most of Earth**
- Fundamentally new capability
- Demonstrated experience in oceanographic applications

Back Up

Wave Glider Specifications

Physical Characteristics				
Vehicle Configuration	Submerged glider connected to a surface float by a tether.			
Dimensions	Float: 2.1m x 0.6m; Glider: 0.4m x 1.9m; Wings: 1.1m wide			
Weight and Buoyancy	75 kg mass, 150 kg displacement			
Endurance	Up to 1 year			
Capabilities and Functional	ity			
Propulsion Power	Mechanical conversion of wave energy into forward propulsion.			
Speed through Water	>0.5 kt in Sea State 1 (SS1); >1.5 kt in Sea State 3 (SS3).			
Battery	86W (peak) solar panel charging a 665 Wh Li-ion battery pack.			
Payload Power Available	3-5 W continuous (typical), depending upon latitude, weather, etc.			
Communications Systems	Iridium Satellite Modem. RF Modem			
Navigation Systems	12 Channel, WAAS enabled GPS; Compass; Water Speed			
	(Optional)			
Control Interfaces	Web-based, GUI Chart interface, with location and status			
	indicators.			
Proven Survivability	SS6 (WMO) (14-18ft seas, 30-40kt winds)			
Emergency Location	Light and RF beacon. Optional acoustic beacon.			
Devices				

Round-the-Island Mission Circumnavigation of Hawaii, January 9th through 18th 2009

The mission was initiated as an engineering test. The Wave Glider was launched out of Kawaihae and circumnavigated the island in offshore waters.

Proprietary, Copyright 2009 Liquid Robotics Inc.

Duration:9 days, 2 hoursTotal Distance:343nmAverage Speed:1.57kts (SOG)Max Speed:3.84kts (SOG) w/ currentSea State (WMO):SS5 [est. 10ft, 15kts]

California Coast Mission

Montery to San Diego, April 17 - 28

• Red Flash was launched out of Monterey and sent on an offshore course offshore course for San Diego.

 Onboard weather sensor data compared favorably against existing weather buoys

Distance:

406nm

Duration:

11 days, 2 hours

Average Speed: 1.53kts

$\in \overline{ }$ **Rough Water Testing**

Winds 30-35kts; Wind Waves 14-18ft; Swell 7-9ft; confused and breaking seas

Test Initiated: 3/28 1100HST Test Concluded: 4/5 0100HST Test Duration: 134 hours Average Speed 1.44 kts

Distance Covered: 193nm 8

 Wind Speed (knots) Wind Gust Speed (knots)

Wave Glider Comms& Control

Copyright 2009 Liquid Robotics Inc.