

True innovation makes a difference

Subsurface wave measurements: Comparison tests in Lunenburg Bay, Canada and Lysekil, Sweden

Torstein Pedersen Nortek-AS

Integrated Inductive Modem

www.nortek.no

True innovation makes a difference

KEO9 0007

Integrated Seabird inductive modem

Use of mooring wire for comms

NOAA in cooperation with JAMSTEC deployed 2 Aquadopps at Kuroshio Extension Observatory (KEO)

16 and 36 meters depth. 4 Sep 2009

Zero Cell Profiler

www.nortek.no

True innovation makes a difference

Profilers typically have a "blanking distance" before profiling begins

Often leads to first measurements beginning 1-2 meters away from head

For those interested in boundary measurements this left a gap

New sensor head has 3 horizontally oriented transducers to measure at the head level.

NOAA deployed buoy #42007 Sept. 1, 2009

True innovation makes a difference

Water Levels at Bay Bi Observed Height: N/A Predicted Height: 2.11 f **NOAA PORTS**

•Use existing navigational buoys

•Harbor entrance: shipping safety, oil spill response, resource management

•Real time

•Comms: •radio/cell net/Iridium

Wave measurement solutions

True innovation makes a difference

Depths limits and reasons for subsurface buoys

Description of the SUV solution

Comparative results of SUV with Directional Waverider

AWAC Measurement Methods

True innovation makes a difference

Waves measured with

- Pressure
- Orbital velocities
- Acoustic Surface Tracking (AST)

Depth Limitations for Bottom Mounted Instruments

www.nortek.no

True innovation makes a difference

Wavelength Must Be: $2L < \lambda$

Depth	Cutoff Freq	Cutoff Period
5	0.70	1.45
10	0.45	2.20
20	0.32	3.10
30	0.26	3.85
40	0.23	4.35
50	0.20	5.00
60	0.18	5.55

Wave Measurement Problem

www.nortek.no

True innovation makes a difference

Solution: Mount AWAC on subsurface buoy

Challenge:

- Current profiles no problem!
- Directional wave estimates problem!
- Subsurface buoy moves during wave burst
- Traditional array methods no longer valid

Rotation

SUV method for buoy

True innovation makes a difference

Energy - Height & Period:

- Acoustic Surface Tracking (AST)
- Pressure (secondary)

Direction:

- Measure along beam velocity
- Measure AWAC attitude (heading and tilt)
- Coordinate transform from *Beam* to *U* and *V*
- Form a triplet with *U*, *V*, and AST

Standard Triplet Analysis

www.nortek.no

True innovation makes a difference

$$D(f,\theta) = \frac{1}{\pi} \left[\frac{1}{2} + \sum_{n} \left\{ a_n \cos n\theta + b_n \sin n\theta \right\} \right]$$

Fourier expansion

... Of which we obtain only the first two pair

 $a_{1}(f) = \frac{C_{SU}}{\sqrt{C_{SS}(C_{UU} + C_{VV})}} \qquad b_{1}(f) = \frac{C_{SV}}{\sqrt{C_{SS}(C_{UU} + C_{VV})}}$ $b_{2}(f) = \frac{2 \operatorname{Re}[C_{UV}]}{C_{UU} + C_{VV}} \qquad a_{2}(f) = \frac{C_{UU} - C_{VV}}{C_{UU} + C_{VV}}$

Mean Direction

 $\theta_1(f) = \arctan(b_1(f)/a_1(f))$

Directional Spread

$$\sigma(f) = [2(1-r_1(f))]^{1/2}$$

$$r_1 = \sqrt{a_1^2 + b_1^2}$$

True innovation makes a difference

Mooring Configurations

www.nortek.no

True innovation makes a difference

215 kg 45 kg

AWAC AST Data

www.nortek.no

True innovation makes a difference

Number of Bad AST Detects

- MSI & SUBS perform similarly
- MSI: 96% AST samples have less than 1% bad detects
- SUBS: 93% AST samples have less than 1% bad detects
- Only 10 bursts (out of 1500+ bursts) have more than 10% bad detects

Standard Results

www.nortek.no

Band Estimates: 10 – 33 seconds Direction - Energy

www.nortek.no

True innovation makes a difference

Sphere better

Band Estimates: 7.7 – 10 seconds Direction - Energy

www.nortek.no

True innovation makes a difference

SUBS better

Band Estimates: 5 – 7.7 seconds Direction - Energy

www.nortek.no

True innovation makes a difference

Both well

True innovation makes a difference

Wave measurements Generally 2-30 seconds

Ideally, mooring response Should be longer than 30

Deployment with SMHI

www.nortek.no

True innovation makes a difference

Natural response = 35 seconds

Critically damped

Currents ~1 m/s

Draw down 32 -> 50 meters

True innovation makes a difference

SUV method from a buoy shows good agreement ... but attention has to paid to the buoy/mooring design.

Applications:

- Site surveys now from a single mooring reducing deployments costs
- Short moorings complicated bottom types (soft or steep)
- Measurements up to and through surface ice events

True innovation makes a difference