BUOY TECHNOLOGY DEMANDS, DEVELOPMENTS, OPERATIONAL CHALLENGES AND FORECASTING IMPROVEMENTS IN INDIA

by

Dr.V.Rajendran & Dr.G.Latha

Ocean Observation Systems
National Institute of Ocean Technology
Ministry of Earth Sciences, Govt. of India
NIOT Campus, Pallikaranai, Chennai - 600 100, India

Ocean Observation Systems

This program covers the development and deployment of different observation systems such as

- Moored buoys
- Tsunami system

National Data Buoy Programme (NDBP)

- NDBP was implemented in 1996 in collaboration with Oceanor
 Norway to establish 12 moored buoy network in Indian seas
- Two kind of buoy systems were acquired from Oceanor
 - Wavescan & Seawatch

Objectives

- To collect met-ocean parameters in Indian seas
- To improve weather and ocean state prediction
- To generate and supply data and its products
- To monitor the marine environment
- To improve buoy technology
- To validate satellite data

Buoy Technology Acquired

Seawatch buoy

Characteristics

· Weight : 450 kg

• Height : 7.5 m

• Diameter: 1.76 m

Sensors

- Air Temperature
- Air Pressure
- Wind Direction
- Wind Speed
- · Wave Height
- Wave Direction
- · Current Speed
- Current Direction
- Water Temp
- Conductivity
- Oxygen
- Chlorophyll
- Hydro carbon

Buoy Technology Acquired

Characteristics

Weight : 924 kg

•Diameter : 2.8 m

·Max height: 6.75 m

Sensors

- Air Temperature
- Air Pressure
- ·Wind Speed
- Wind Direction
- Wave Height
- Wave Direction
- Surface Currents
- ·Water Temp.
- Conductivity

Wavescan buoy

Satellite Communication

Real time Geo-stationary satellite INMARSAT has been used for data transmission

12 Buoy Network Achieved (1997 to 2002)

Data Quality

- Data Quality was good
- Continuous long term measurements were obtained
- Extreme Events were captured and the data was useful for cyclone warning

SST Observation in Central Arabian Sea by DS1 Buoy

Super Cyclone in Bay of Bengal (October 1999)

Super Cyclone Wave Observations

Near Real Time End Users Of Buoy Data

2 1.11				
SI. No	End User	Place	Data Supply	Use
	India Meterological Department	New Delhi	24 x 7 x 365	For their day-to-day operational weather
1	(IMD)	Chennai	(Daily 8 times)	forecasting and cyclone warning
	National Center for Medium Range Weather Forecasting		24 x 7 x 365	This organisation receives buoy data from IMD for validation of their
2	(NCMWRF)	New Delhi	(Daily 8 times)	forecasting model
		Head Quarters (New Delhi)		
		East (Chennai)		
		West (Mumbai)	24X7X365	To ensure safety of life at sea as well for
3	Indian Coast Guard	Andaman (Port Blair)	(Daily 8 times)	their ship operational requirements.
		HQ WNC, Mumbai.		
		Kochi.		
	Indian Navy (Command Met	Visakhapatnam	24X7X365	For their strategic planning and
4	Office)	Port Blair	(Daily 8 times)	management of operations
				To support Potential Fishing Zone notification and validation of ocean state
	Indian National Centre for Ocean		24X7X365	forecasting model
5	Information Services (INCOIS)	Hyderabad	(Daily 8 times)	Torodaking moder
				Data is given in GTS format to IMD to
				disseminate to WMO for their activates
	Wayld Matavalagical			such as understanding global climate and forecast.
6	World Meterological Organisation (WMO)	Geneva	-	Torecast.

Life Time of Buoys

- Average life time of buoy was 6 to 7 months Frequent damages due to poor tamper proof design, marine fouling
- In order to overcome this tamper proof features on buoy system incorporated

Damages Due to Vandalism

Bio-Fouling

Advancement in Buoy Technology

- Fasteners that cannot be opened with conventional tools
- Solar Panel made flush
- Protective Hood
- All surface floats on mooring submerged

Indigenisation of Buoy Technology

Indigenisation of Buoy Technology

Sl No.	Buoy Components	Present Status of indigenisation			
1	Buoy Hull	V			
2	Mechanical Components				
	2.1 Instrument Cylinder – Aluminium	√			
	2.2 Lid – Aluminium	$\sqrt{}$			
	2.3 Mast, etc. – Aluminium	V			
3	Mooring Components				
	3.1 Combination Rope	$\sqrt{}$			
	3.2 Chains, shackles etc.	V			
4	Buoy electronics CPU	√			
5	SAT Tx	$\sqrt{}$			
6	Sensors	X			
7	Beacon Light	V			

Indigenisation of Buoy Technology

Mechanical Components

4000

Shackle, Pear ring, Swivel & Chain

Keel Frame

Float

Lid Locks

Major Indigenised Buoy Components.....

Data Acquisition Unit

Transmitter & Antenna

Solar Panel

Major Indigenised Buoy Components.....

Battery

Combination wire rope

Hardware components

Indian Data Buoy (NIOT/DOD Product)

Characteristics:

Diameter : 2.2 m
Overall height with : 6.5 m
Weight : 950 kg.
Reserve Buoyancy : 2000 kg.
Colour : Yellow

Met-Ocean Parameters Measured

- Air Pressure
- Air Temperature
- Humidity
- Wind Speed and Direction
- Sea Surface Temperature
- Salinity/Conductivity
- Current Speed and Direction
- Wave Parameters include
- Significant wave height.
- Average wave period.
- Average wave direction, whole spectrum.
- Significant wave height, band 'a' (Swell wave height).
- Average wave period, band 'a' (Swell wave period).
- Average direction, band 'a' (Swell wave direction).
- Significant wave height, band 'b' (Sea wave height).
- Average wave period, band 'b' (Sea wave period).
- Average wave direction, band 'b'(Sea wave direction).
- Maximum wave height
- Period of the highest Wave
- Zero crossing wave period

Establishment of 40 Buoy Network

Since 2002 indigenous buoys have been deployed and the target of 40 buoy network was achieved in 2008 in the following stages

Year	No. of buoys in the network
2002	12
2005	20
2007	28
2008	43

Classification of Buoy Network

Ocean Buoys

Sensor Fit

Air Temperature

Humidity

Air Pressure

Wind (speed & direction)

Wave parameters

Current (speed & direction

SST & Salinity/Conductivity

Sensor Fit

Air pressure
Humidity
Air Temperature
Wind speed & Direction
SST
Conductivity/Salinity

Environmental Buoys

Sensor Fit

Chlorophyll

Dissolved Oxygen

Conductivity/Salinity

pH

Turbidity

SST

Port/Shallow Water Buoys

Sensor Fit

Wind speed & direction
Air pressure
Air temperature
SST
Wave
Current speed & direction

Current Buoy Network

Data Quality

- Data Quality continues to be good
- Continuous measurements are obtained
- Extreme Events were captured and the data was useful for cyclone warning

Life Time of Buoys

Average life time of buoy continues to be 6 to 7 months only.
 Though tamper proof designs were made vandalism continues.

Recent Damages

Details of Buoy Maintenance Carried Out

Year [Year	Deployments	Retrievals	Total
Aug - Dec 1997	8	1	9
Jan - Dec 1998	16	13	38
Jan - Dec 1999	13	13	32
Jan - Dec 2000	20	12	33
Jan - Dec 2001	8	7	15
Jan - Dec 2002	25	11	36
Jan - Dec 2003	23	22	45
Jan - Dec 2004	38	32	70
Jan - Dec 2005	31	26	57
Jan - Dec 2006	34	17	51
Jan - Dec 2007	24	11	35
Jan - Sep 2008	38	2	40
Total	240	165	421

Strategy to Maintain Data from 40 buoys

- In order to achieve data from 40 buoys at any instant it is planned to establish and maintain 100-120 buoy deployment
- Maintenance cruises at regular intervals which is now feasible due to the availability of more vessels with NIOT.
- Creating awareness among fishing community at National/ International level

Tsunami System

26th December 2004 - UNFORGETTABLE DAY

Master Plan

On 27th December 2004, NIOT prepared the Master plan to effectively detect and early warn Oceanogenic Disasters around Indian Seas.

Bottom Pressure Recorder (BPR) System Selection

Specifications of Requirements drawn for BPR system with following important criteria:

1. Pressure Sensor:

Para scientific quartz pressure sensor, 410 model for a pressure range of 400 bar. The pressure sensor and processing unit are to be tested and calibrated by a NIST accredited laboratory as part of the manufacturing process.

2. Processing unit Software:

NOAA algorithm of DART buoy system

3. Minimum Performance Requirements:

Measurement accuracy : 0.5 cm or less

Measurement sample rate : 15 secs.

Measurement processing : 2 min (or less desirable)

4. Acoustic Modem cum release with built in tilt sensor:

Make : Proven

Working range : 6,000m

Operating frequency : 9 to 14 kHz

Transducer : Omni directional

Slant range : 10 km.(acoustic release)

Tilt indication when grater than $\pm 25^{\circ}$ from vertical

Bottom Pressure Recorder System

NIOT reserved the fund for quick development of BPR system and floated a global tender. Following three (BPR) suppliers emerged

-Envirtech

(Italy)

-Fugro Oceanor

(Norway)

-Sonardyne

(UK)

All in one [Pressure Sensor BPR Electronics, Acoustic Modem & Release and batteries]

BPR Testing at ATF of NIOT

Location for Deep Ocean Tsunami Detection Buoys

Deployment of Tsunami Buoy System

Buoy deployment begins

Buoy being lowered on to the sea

NOAA - NIOT Tsunami Buoys Data

Deep ocean Tsunami Buoys

Deep ocean Tsunami Buoys Established in Sep 07

Tsunami Observations

Vertical scale ~10cm/div

Seismic ground wave detected 11:30:15

Vertical scale ~10cm/div

wave triggers at

Thank You