## **Development and evaluation of Iridium SVP-B mini and other versions of drifters**

Lunev E., Motyzhev S. Kirichenko A., Yachmenev.V. Marine Hydrophysical Institute NASU/Marlin-Yug Ltd, Kapitanskaya,2, Sebastopol, Ukraine, 99011

# The jobs to be completed according to the 2008 DBCP Workplan

- **1. Participation in the Iridium Pilot Project**
- 2. Approach to drifter to be deployed from 20m height, when ship has 25 knots speed
- 3. Development and evaluation of new drifters



# The smaller buoy, the easier way to be automatically deployed







## The parameters of first prototype of Iridium SVP-B mini drifter

- **34-cm float, 61-cm drogue, 0.4cm OD tether**
- Drag area ratio on level of 40
- Modified barometric port with vertical membrane
- Iridium modem 9601-D, MM400 measuring module and MT9601 matching unit with Trimble Lassen iQ GPS receiver
- 5\*8 =40 D-cell Alkaline-Manganese Dioxide Batteries
- Hourly samples of AP, APT (as for 3 hours ago), SST, BV, Subm and GPS fixes.
- Version 3.0 of Iridium data transmission format
- Switching ON 20 min before round hour
- 12 months theoretical lifetime if mean SST ~ 20°C.

#### The results of SVP-B mini buoy evaluation (Drake Strait 2.12.07 – 10.08.08)



- 252-day lifetime, when mean SST ~ 5°C
- Drogue was lost on 132 day
- According to the ECMWF the AP RMS ~ 0.8 hPa without fallings or scattering of AP data
- Similar for SST the RMS ~ 0.4°C
- Iridium provided continuous set of hourly samples
- GPS provided fixes if submergence was smaller than ~15%

#### **SVP-B mini drifter can be a reliable tool**

# The results of the experiment to be updated for second prototype

- Absence of hourly observation took place sometimes
  Doubled SBD sessions took place sometimes
- Necessity to switch on a buoy 20 minutes before round hour
- Absence of fresh GPS locations if level of submergence > 15%
  - Absence of old fixes in data if no fresh locations
    - It would be desirable to have longer lifetime



#### Creation and testing of SVP-B mini of second prototype 2 buoys for SAMS with 15 and 50-m drogues



#### **Novelties**

- Old GPS fixes put in data if not fresh ones
- RTC with GPS synchronizationis used for samples at roundhours

#### **Advantages**

- Meteorology according to the WMO requirements
- Oceanography- good tool for study of shear currents (the fixes at same time – no interpolation)

# **Further improvement of second prototype of SVP-B mini drifter**

**5 buoys for Meteo-France** 



- 6\*7 =42 D-cell Alkaline-Manganese Dioxide Batteries
- Updating on-board software
- Longer lifetime (+30%)
- Version 3.2of Iridium data transmission format
- Elimination of multiple hourly reports sent via Iridium;
- **Disposition of Iridium and GPS antennas at the top of float**

## Argos drifter and data timeliness as for round hour (fragment of data from Caspian buoy)

| UTC                                                                                                               | Delay due to<br>switch on<br>(min) | Time of samples | No. Sat | Satellite<br>(Receiving<br>station) | Delay due to<br>passes<br>(min) | Total delay<br>(min) | Locations |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------|---------|-------------------------------------|---------------------------------|----------------------|-----------|
| 00:00                                                                                                             | 18                                 | 0:18            | K       | 0:27                                | 9<br>57                         | 27*<br>75            | + +       |
| 01:00                                                                                                             | 18                                 | 1:18            | K       | 2:12                                | 54                              | 73                   | +         |
| 02:00                                                                                                             | 18                                 | 2:18            |         | 3:00                                | 42                              | 60                   | +         |
| 03:00                                                                                                             | 18                                 | 3:18            | -       | -                                   | -                               | -                    | -         |
| 04:00                                                                                                             | 18                                 | 4:18            | -       | -                                   | -                               | -                    | -         |
| 05:00                                                                                                             | 18                                 | 5:18            | M<br>A  | 5:18<br>5:27                        | 0<br>9                          | 18*<br>27            | +         |
| 06:00                                                                                                             | 18                                 | 6:18            | M<br>A  | 6:57<br>7:12                        | 39<br>54                        | 57*<br>72            | +         |
| 07:00                                                                                                             | 18                                 | 7:18            | N       | 8:06                                | 48                              | 66                   | +         |
| 08:00                                                                                                             | 18                                 | 8:18            | -       | -                                   | -                               | -                    | -         |
| 09:00                                                                                                             | 18                                 | 9:18            | N       | 9:40                                | 22                              | 40                   |           |
| 10:00                                                                                                             | 18                                 | 10:18           | L       | 11:06                               | 48                              | 66                   | +         |
| Mean delay (if 2 or more passes took place, the time of first delay having the sign * was<br>used for processing) |                                    |                 |         |                                     |                                 | 50                   | - INTER   |

#### **Disadvantages of Argos drifter without RTC**

- Total delay depends on two components: time of activation and time of satellite pass
- Delay due to the time of activation has fixed value within interval from 0 to 59 min. This delay is quasi-constant during full lifetime
- Delay due to the time of satellite pass can vary from zero to 59 minutes for buoy with hourly samples
- **Total delay can vary from 0 to 120 minutes**
- There are samples, which cannot be sent to a user within one-hour interval, because of feature of satellite passes
- Sometimes, the data of same hourly sample are twice (three times) re-transmitted with different satellites

## Argos RTC drifter and data timeliness as for round hour (fragment of data from BOM buoy)

| UTC     | Delay due to<br>switch on<br>(min)                                                                             | Time of samples | No. Sat     | Regional<br>receiving<br>station | Delay due to<br>passes<br>(min) | Total<br>delay<br>(min) | Locations                               |
|---------|----------------------------------------------------------------------------------------------------------------|-----------------|-------------|----------------------------------|---------------------------------|-------------------------|-----------------------------------------|
| 00:00   | 0                                                                                                              | 00:00           | N           | 00:25                            | 25                              | 25                      | +                                       |
| 01:00   | 0                                                                                                              | 01:00           | -           | -                                | -                               | -                       | -                                       |
| 02:00   | 0                                                                                                              | 02:00           | N<br>K      | 02:05<br>2:25                    | 5<br>25                         | 5<br>25                 | + +                                     |
| 03:00   | 0                                                                                                              | 03:00           | -           | -                                | -                               | -                       | -                                       |
| 04:00   | 0                                                                                                              | 04:00           | KL          | 04:05<br>04:34                   | 5<br>34                         | 5<br>34                 | ++++                                    |
| 05:00   | 0                                                                                                              | 05:00           | K           | 05:50                            | 50                              | 50                      |                                         |
| 06:00   | 0                                                                                                              | 06:00           | A<br>M      | 06:19<br>06:40                   | 19<br>40                        | 19<br>40                | +                                       |
| 07:00   | 0                                                                                                              | 07:00           | -           | -                                | -                               | -                       | -                                       |
| 08:00   | 0                                                                                                              | 08:00           | A<br>M<br>N | 08:02<br>08:20<br>08:37          | 2<br>20<br>37                   | 2<br>20<br>37           | +                                       |
| 09:00   | 0                                                                                                              | 09:00           | A           | 09:41                            | 41                              | 41                      | +                                       |
| 10:00   | 0                                                                                                              | 10:00           | M           | 10:02<br>10:11                   | 2<br>11                         | 2<br>11                 | +++++++++++++++++++++++++++++++++++++++ |
| Mean de | Mean delay (if 2 or more passes took place, the time of first delay having the sign * was used for processing) |                 |             |                                  |                                 |                         |                                         |

### Advantages and disadvantages of Argos buoy with RTC

- Delay due to the time of activation is zero
- Delay due to the time of satellite pass continues to be from zero to 59 minutes
- Total delay for this buoy depends on one component only: time of satellite pass and cannot be larger than 60 minutes

## **Iridium RTC-GPS buoy and data timeliness as for round hour** (fragment of data from Meteo-Fr. buoy)

| GMT      | Delay due to<br>switch on<br>(sec) | Time of samples | Delay in system<br>(mm:ss) | Total delay<br>(mm:ss) | Locations |
|----------|------------------------------------|-----------------|----------------------------|------------------------|-----------|
| 00:00:00 | 0                                  | 00:00:00        | 02:09                      | 02:09                  | +         |
| 01:00:00 | 0                                  | 01:00:00        | 01:22                      | 01:22                  | +         |
| 02:00:00 | 0                                  | 02:00:00        | 01:22                      | 01:22                  | +         |
| 03:00:00 | 0                                  | 03:00:00        | 01:49                      | 01:49                  | +         |
| 04:00:00 | 0                                  | 04:00:00        | 01:18                      | 01:18                  | +         |
| 05:00:00 | 0                                  | 05:00:00        | 01:23                      | 01:23                  | +         |
| 06:00:00 | 0                                  | 06:00:00        | 02:06                      | 02:06                  | +         |
| 07:00:00 | 0                                  | 07:00:00        | 01:18                      | 01:18                  | +         |
| 08:00:00 | 0                                  | 08:00:00        | 01:17                      | 01:17                  | +         |
| 09:00:00 | 0                                  | 09:00:00        | 01:15                      | 01:15                  | +         |
| 10:00:00 | 0                                  | 10:00:00        | 01:25                      | 01:25                  | +         |
|          |                                    |                 | Mean delay                 | 01:31                  |           |

#### Advantages and disadvantages of Iridium RTC-GPS buoy

- GPS synchronization of RTC provides samples at XX:00:00, thus delay due to the time of activation is zero
- In general, the delay due to Iridium system operation doesn't exceed 3 minutes. However, sometimes it is possible gaps of hourly data, even if the buoy is at ground surface

## **Development of Argos-GPS marker** for ice tracing



## **Development of coastal drifters equipped** with GSM modems and GPS receivers



#### Next efforts 1

- Evaluation of the second prototype of Iridium buoys (Meteo-France) operation in-situ
- Using of Lithium batteries instead of alkaline ones. Lifetime should be up to 30 months with small dependence as for environmental temperature



#### Next efforts 2

- Using of new materials for increasing of reliability of drogue connection with tether to have the drogue longer attached
- Deployment in the Black Sea under E-Surfmar support two SVP-BTC temperature profiling drifters in version: Iridium-GPS-RTC
- Development and evaluation fixing capabilities of new GPS receivers with higher sensitivity and faster building of almanac
- Discuss a Rank integration to the Version 3.2 data format to avoid gaps of hourly samples and keep a continuity of data
- Discuss an using of BV=5+0.2\*n equation for data transfer via Iridium

#### Conclusions

- 1. First prototype of Iridium GPS SVP-B mini drifter showed good reliability of AP samples during full lifetime of buoy
- 2. Lifetime of second prototype is near 30% longer in contrast with buoy of first prototype
- **3.** RTC allows to have measurements at round hours and improve data timeliness for Argos as well for Iridium
- 4. Most effective is RTC, which has GPS synchronization with Greenwich time
- 5. Iridium drifters equipped with RTC-GPS synchronization have small delay when data transfer from buoy to operator
- 6. Essential increasing of the buoy lifetime can be achieved if lithium batteries are used instead alkaline ones
- 7. Iridium GPS-RTC mini drifter can be an unified platform for long meteorological and oceanographic investigations in the Ocean

# Thanks