Development of NDBC Standard Buoys

Bill Burnett And Chung-Chu Teng NOAA/NWS/National Data Buoy Center

Oct 2008

- Met/Ocean Platform (MOP/YB)
 - 105 Moored (Met/Ocean) Buoys including 12 Hurricane Supplemental Buoys.
 - 56 land-based Coastal–Marine Automated Network Stations (C-MAN)
- Tropical Atmosphere Ocean (TAO)
 55 TAO Buoys + 4 ADCP Moorings
- Deep-Ocean Assessment and Reporting of Tsunami (DART)
 – 39 DART Buoys

NDBC Ocean Observing System of Systems (NOOSS)

NDBC Met/Ocean (Yellow) Buoys

1.8-m discus, 3-m discus, 6-m boat-shaped NOMAD, 10-m/12-m discus buoys

Tropical Ocean Atmosphere (TAO)

Next Generation ATLAS Current Meter Mooring

DART Buoy System

DART Mooring System

Courtesy of PMEL

101JON1280KUBVROAAPME

Develop the Multi-Purpose (Standard) Buoy

....all Programs

....improve efficiency and cost effectiveness of NDBC operations

- Service multiple buoys from all programs on a cruise
- Use a wide variety of support vessels....increased opportunity
- Common components
- Establish baseline form factors
- Long-term replacement strategy for all 3m, DART, TAO hulls

NDBC NOOSS Standard Buoys

nnar **Standard Tower** Self Powered O+I Light Sensor Mounting Flanges (4) Wind Fin + Radar Reflector Payload Station + Payload Tubes (4) Vent Piping (2) Aluminum Tower - 7'8" Tall

Standard Buoy Hull

Hull External Mounts

Bolt-on Bracket with Mounting Dowel (Aluminum) External ADCP Battery Canisters (2) with Retainer Bracket

Lower Well Sensors

NNAF

DART + Surface Current Meter

Standard Bridle

- Weather Buoy Configuration
 - Non Ferrous Air Cegasa Primary Batteries -Negates need for buoy spin locally and during service
 - 8 strings for 4800 Ahrs capacity
- TAO and DART Configurations
 - Common Lithium Battery Pack for TAO and DART
 - Co-located with Payload

Deployment Pictures

Potential Areas of Application

Wind Speed

Wind Direction

Air Temperature

Average Wave Period

Peak Wave Direction

NDBC Time Series Plots - Station 46090 vs 46047

46090_MWDIR ----

46047_MWDIR ----

Field Test Summary

- 46090 (Weather/Ocean)
 - When the data came in it was accurate
 - IM coupler or a payload board failed
 - 300 kHz ADCP performed well
 - 2.3-m hull with DDWM gives accurate enough wave heights, periods and directions
- 46290 (TAO)
 - Data matched closely with 46090
 - Wind directions off ~70°
- 46490 (DART)
 - Station performed as well as other DART stations

Project Status

- Phase 1 Formulate strategy
 - Completed FY07-Q4
- Phase 2 Prototype development
 - Critical Design Review Completed FY08-Q1
 - Procurement of Components Completed FY08-Q2
 - Fabrication, Integration, Testing Completed FY08-Q3
- Phase 3 Field Testing & Strategic Ops Planning
 - Initial Field Deployment (3 prototypes West Coast) Completed FY08-Q4
 - Proof of Concept Field Maintenance
 - Development of Implementation Plan

- Define environmental limits of buoy survivability
- Evaluate networks to identify appropriate locations for standard buoy use based on
 - Maximum Impact (cost and efficiency)
 - Expected Environmental Factors
 - Type and Availability of Service Vessels
 - Service History
- Phase-in mini-networks (5-10 stations)
- Use excess legacy hulls in more severe environments, or as ready-staged spares to increase the health of the overall network

NDBC **NOAA National Data Buoy Center**