Recent Developments in Tsunami R&D and Forecast Systems

Christian Meinig NOAA/PMEL Director of Engineering Oct 15, 2007

Pacific Marine Environmental Laboratory

Outline

- DART array update
- Forecast System update-examples
- Deployment Results
- Tsunami R&D

Pacific Marine Environmental Laboratory

Global DARTs

~38 systems, 5 countries

Pacific Marine Environmental Laboratory

Tsunami Forecasts

- Pre-operational stage
- Four successful realtime forecast over the past 18 months
- Testing and UI evaluations at warning centers

Pacific Marine Environmental Laboratory

DART & MOST forecast Model comparison from Sumatra Sept 12 EQ

Liujuan Tang NCTR, NOAA/PMEL

Pacific Marine Environmental Laboratory

Example: Timeline of a Tsunami Event

Warning center

From Y. Wei, et al., 2007

Pacific Marine Environmental Laboratory

DART Data Greatly Improves Forecast

hours after earthquake (06:43:07 UTC, November 17, 2003)

Pacific Marine Environmental Laboratory

Next Generation DART[™] Technology

Desired improvements from DART[™] II

- Eliminate need for large ship & skilled crew
- Deployment sea state limitations
- Large buoys
- Vandalism protection
- Flexibility to array operations
- Cheaper lifecycle costs

Pacific Marine Environmental Laboratory

DART[™] system evolution

•	20 years of tsunami research	(early 80's)
•	Internally recording instruments	(mid-80's)
•	One-direction realtime reporting (DART [™] I)	(mid-90's)
	• Transitioned to operations	
•	Bi-directional, global reporting (DART [™] II)	(2003)
	 Patent pending & transitioned to operations 	
	 Concept copied/adopted by commercial vendors 	(2006)
	 Trademark filed/License applications 	
•	Bi-directional, global, easy to deploy R&D (DART [™] -ETD)	(2007)
	• SAIC licenses DART II technology	
	 ETD Pre-operational prototypes deployed 	

Pacific Marine Environmental Laboratory

DART[™] II & DART[™] ETD

Common core components-different packaging i.e. desktop and laptop

- No Changes:
 - Data logger CPU, Acoustic Modem PCB, BPR, Paros, Iridium Modem and transmission protocol, system modes and tsunami detection scheme.
- Minor Changes:
 - Acoustic modem transducer and pre-amp, system software and GPS & ground plane.

Pacific Marine Environmental Laboratory

Infrastructure-unchanged

Pacific Marine Environmental Laboratory

Reel with 5000 meters of mooring line

SST

Anchor

Barometric Pressure

Wind Sensor

NDAR

PMEL -Engineering Development Division Seattle, WA

IN

Acoustic Modem Transducer

- Tsunameter

Packaging & Logistics

Pacific Marine Environmental Laboratory

DART II-ETD

New Features:

4-5 year expendable BPRConex packagingMET sensorsImproved upper mooring lineOngoing rigorous testing

Pacific Marine Environmental Laboratory

DART-ETDs (Low Latitude)

Pacific Marine Environmental Laboratory

102 Sea Height

Pacific Marine Environmental Laboratory

103 Sea Height DART II-ETD 103 4647.00 Primary 99% Secondary 98% 4646.80 On-going ~7 month test deployment 4646.60 Sea height (m) 4646.40 4646.20 4646.00 4645.80 18-Jul-07 20-Mar-07 9-Apr-07 29-Apr-07 19-May-07 8-Jun-07 28-Jun-07 7-Aug-07 Time (GMT)

Pacific Marine Environmental Laboratory

103 Sea Height

DART-ETD (High Latitude)

Pacific Marine Environmental Laboratory

105/6 Line Tension and Sea Height

Pacific Marine Environmental Laboratory

PMEL Cost Study Analysis

...."The findings (largely based on the cost differentials in unit production, unit service life, and the mode of deployment and type of vessels utilized) indicate that a fully deployed array of 39 ETD DART-II sites could be accomplished on sufficient service cycle for an annual budget of approximately \$2.97M, or less than 22% of the projected budget for comparable array maintenance with Standard DART-II moorings."....

Pacific Marine Environmental Laboratory

4th Generation DART?:

A system with the power of human intelligence, vision capabilities, integrated audible alarm and very low battery requirements

Pacific Marine Environmental Laboratory

Acknowledgements

 Vasily Titov, Scott Stalin, Dirk Tagawa, Michael Strick, Michael Spillane, Marie Eble, Rachel Tang, Angie Venturato, Yong Wei

Pacific Marine Environmental Laboratory

Thank you.....For more information

www.tsunami.noaa.gov

www.pmel.noaa.gov/tsunami/Dart/dart_ref.html

Pacific Marine Environmental Laboratory