"Observations of Atlantic Hurricanes with Air-deployed Drifters"

by

Peter Niiler* and Rick Lumpkin#

*The Scripps Institution of Oceanography, USA and #Atlantic Oceanographic and Meteorological Laboratory, USA

REVIEW

- Commencing in 1998, SVP-Wind drifters were deployed in tropical Atlantic in 'Hurricane Alley' from ships and airplanes.
- A review of wind data from more than 100 drifters that had reported on GTS in 2003 showed that NOT ONE drifter had experiences Hurricane wind conditions of 27m/sec wind.
- In 2003, 2004, 2005 and 2007 SVP-W (Minimet) and SVP-T(z) (ADOS) drifters, targeted to specific hurricanes, were deployed by 53rd Hurricane Hunter C-130 aircraft in the tropical North Atlantic.
- For 2008 hurricane season there will be 70 drifters awaiting deployment at Keesler AFB, MS

C-130 deployed buoys

Air-Deployment Packaging

On August 19, 2007 4 Minimets and 8 ADOS drifters deployed in path of category 4 Hurricane "Dean" All buoys sent data to Argos through Dean

Top: Sea surface temperature (shading, °C) and winds (arrows) measured by the hurricane drifter array at top. Bottom: subsurface temperatures at a

depth of 100m.

After Dean passage, one drifter went aground on Cuba, two stopped working and 9 are producing "good" data 57 days later.

Hurricane Felix (fr/5am Sunday advisory) and Buoy Array

Observed cold "wake" of Hurricane "Frances" in Sept 2004 (red squares) with drifter tracks (pink and black) and absolute sea level (light black) *(Courtesy of S. Zedler)*

Drag coefficients for stress as function of wind speed used in Frances simulations. (*Courtesy of S. Zedler*)

Model simulated vs observed change of SST averaged 24 hours before and after passage of Frances for different C_D formulations (*Courtesy of S. Zedler*)

Model simulated vs observed daily average high frequency speed at 15m depth after passage of Frances for different C_D formulations *(Courtesy of S.Zedler)*

Summary of Modeling Results

- Model response is fully three-dimensional and non-linear components in momentum and vorticiy balances are important
- Model simulations show "sensitivity" to drag coefficient value at hurricane force winds
- Best simulation of observations is with hurricane force drag coefficient decreasing with wind speed
- Decay of near inertial motions in observations is faster than in model

Development of SVP-T(z)-Mini

- Existing SVP-T(z=150m) weighs 160kg, packed for C-130 deployment in 120cm cube box
- New configuration weighs 12kg, packed for P-3, or small aircraft, deployment in 10cm dia, 100cm length tube
- First sea tests off San Diego in early 2008
- Proposed research program for deployments of arrays of SVP-T(z=150m)-Mini in Western Pacific Typhoons in 2008-2009

SmartSensor Spools

- 15 meters per spool of 1/8-inch Spacelay.
- Two spools shown here.
- Length of 10 spools and ballast: 15.5 inches.

Clearwater Instrumentation, Inc.

SmartSensor Mini-Puck Mock Up

Potted in urethane Thermistor on top Pressure sensor on bottom Wire stress relieved inside fittings Wire wrapped outside puck

Clearwater Instrumentation, Inc.

Spooled Deployment

30 May 2007

Prototype 10 sensor spool

Prototype puck

Prototype electronics, antenna and power case

CONSLUSIONS

- "Operational" system for targeted C-130 air deployments of various SVP drifters is completed.
- "High quality" measurements of Pa, SST, wind direction and T(z=150m) through hurricanes can be made
- Meteorological research and operational hurricane monitoring aircraft cannot deploy these large packages
- New "operational" mini system for acquisition tropical cyclone surface and subsurface data is in development