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INTRODUCTION

Wind waves belong to a high-frequency type of
geophysical oscillations, and their characteristic
periods are of the order of seconds. Long–term
variations of wind wave field statistical parameters
are produced by modulation of their generation
conditions. The strongest manifestations are on
the synoptic temporal scale, but significant scales
of such variability also include annual, inter-annual
and longer variations.

If wind wave generating conditions are constant,
wind waves can be considered a quasi-stationary,
small-scale geophysical process. For the deep sea
case, the wave heights h obeys the Rayleigh
distribution

(I.1)

with h  denoting mean wave height.

Forristall [Forristall, 1978] proposed another
distribution, which is in frequent use now:

(I.2)

Here h6.1hs =  is the so-called “significant” wave
height. For a record consisting of n waves, it is
equal to the average height of the one-third highest
waves. After normalizing with respect to the zero-
order moment of the spectrum m0 the above
distributions (1.1) and (1.2) read as follows:

                                                                    ,

Comparison of these distributions shows that they
are close for small probabilities. At the same time,
the relation (1.2) predicts somewhat smaller values
of hmax for higher waves.

For example, the Forristall relation results in an
estimate of the highest wave in a thousand waves,
which is equal to 0.907 of the estimate obtained
with the Raleigh distribution. Wave heights in a
sequence are statistically connected, and their
correlation function is as follows:

(I.3),

where D denotes the process variance, α is the
decrement, and τ is the time lag.

The most fundamental starting point for derivation
of equations governing the wave spectrum
evolution is the equation for the conservation of the
wave action density N (see e.g., [Komen et al.,
1994; Lavrenov, 1998]):

sGNNk
k
NNN

t
N =+++++ ω

∂ω
∂β

∂β
∂

∂
∂θ

∂θ
∂ϕ

∂ϕ
∂

∂
∂

!!!!!

(I.4)

N is a function of latitude ϕ, longitude θ, wave
number k, angle β between the direction of wave
propagation and the parallel, angular frequency ω,
and time t. In the deep sea case the source
function GS is represented as the sum of three
terms:

Gin parameterizes spectral wave energy generation
by the wind, Gds is the wave energy dissipation,
and Gnl represents the effect of weak nonlinear
interactions on the wind wave spectrum change.

Present spectral wind wave models based on
equation (1.4) are rather well developed. They
incorporate a representation of all significant
mechanisms affecting the wave spectrum evolution
and are quite sophisticated numerically. Being
forced by wind data (or atmospheric pressure), and
data on boundary layer stability, the models
compute the two dimensional (with respect of
frequency and direction) spectrum S (ω, β ) at
nodes ir

"
of the numerical grid at times tj.

For the statistical analysis of long term series, we
will use in this study the results of hydrodynamic
model simulations. The basic variable will be mean
wave height 0m2h π= , where m0 is the zero-
order moment of the two-dimensional spectrum,
i.e.

∫∫= βωβω dd),(Sm0

at fixed locations ri. The simulations were
conducted at the Arctic and Antarctic Research
Institute under the supervision of Dr. Igor V.
Lavrenov. Another source of input data will be


















−−=

2

h
h

4
exp1)h(F π




















−−=

126.2

sh
h26.2exp1)h(F

























−−=

2

0m
h

8
1exp1)h(F

























−−=

126.2

0m
h

42.8
1exp1)h(F

dsnlinS GGGG ++=



-   2   -
long-term synoptic wind wave observations th  at
automated buoys in several areas of the World
Oceans [Buckley, 1988; Boukhanovsky et al.,

2000] and estimates  2
sw

2
ws hhh += from visual

ship observations. Here hws and hsw are wind sea
and swell heights, respectively.

Time series of wind wave heights in mid-latitudes
and subtropical areas of the World Oceans make
alternating sequences of storms and weather
windows. We define a storm of duration ℑ  and
intensity h+ as a situation when the random
function h(t) exceeds a predefined value Z. The
period Θ during which the wave height is less than
this threshold will be called a weather window of
intensity h–.

Figure. I.1. Parameters describing storms and weather  windows

The parameter δ shows the asymmetry of the
storm: δ=(tp–tb)/ ℑ; tb, tp, te are times of storm start,
maximum development, and end, respectively.
Fig. 1 clarifies these definitions.

Wave observations or model simulation results can
be represented in a more general way by the log-
normal approximation of wave height distribution.
The corresponding distribution density function
reads as follows:

(I.5)

where 5.0h  is the median, and s−1 is the r.m.s.
deviation of the wave height logarithms. Fig. I.2
gives an example of wave height distribution
plotted against probability (I.5) of non-exceedance.

If a wave height series h(t) at times of synoptic
observations (i.e. with recording interval of 3 or 6
hours) is being considered as a sample of a
stationary random function,  then its auto-correla
tion function for the synoptic variability range can

Figure I.2. Combined (wind sea and swell) wave
height distribution for February (1) and August (2).

Log-normal probability plot. Ocean Weather
Station “Lima”: data of 1976-1980.
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also be written as (I.3), but with other parameters.
For example, from two to four consecutive
individual waves within the quasi-stationary period
are expected to correlate (the whole episode
lasting 10-20 seconds). Wave observations at
synoptic times are correlated, on average, for 1.5-3
days.

Wind waves also undergo an annual cycle. This
results in a corresponding variation of monthly
wave characteristics. For example, monthly mean
wave heights th  and parameters h0.5 and s of
distribution (I.5) vary in a cyclical mode from
season to season and show stochastic fluctuations
from year to year. Fig. I.3 shows the seasonal
variation of parameters h0.5 and s at Ocean

Weather Station “M” located in the Norwegian Sea.
Monthly parameters exhibit explicit seasonal
variability, and some stochastic fluctuations are
seen as variations of data in the same months of
different years. The January median (shown as a
horizontal line in boxes in Fig. 1.3.a) of h0.5
estimates is approximately 3.2 m. During individual
years it can vary from 2.2 to 4.0 m, making the
inter-quartile range of (3.5-2.8) = 0.7 m.  Such
rhythmic variations can be expressed
mathematically through a periodically correlated
stochastic process (PCSP) with mean m(t) and
variance D(t), which are periodic functions of time
with period T = 1 year. Its covariance function
K(ti,tj) = K(ti+T,tj+T) depends on both arguments.

Figura I.3.  Estimates of log-normal wave height distribution parameters h0.5  and s at Weather Station “M”

Figura I.4. Mathematicall expectation (a) an
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PCSP samples, if they are taken at intervals equal
to the correlation period T, produce stationary
random series. Fig. I.4 shows functions m(t), D(t)
obtained in experiments held in the Black Sea and
Baltic Sea.

The following stochastic models can be used for
the simulation of random series with a priori given
properties.

Auto-regression model for the quasi-stationary and
synoptic variability ranges

At the quasi-stationary and synoptic intervals of
variability the wave process is best described by
the stationary auto-regression  model AR(p) of
order p, namely

         ,t

p

1k
ktkt εξφξ += ∑

=
− ζ t = ƒ(ξt)          (I.6)

where φk are coefficients to be computed using the
correlation function Kξ(τ) as given by relation (I.2),
εt is white noise with a given distribution function,
which has to be compatible with the nonlinear
functional transformation ƒƒƒƒ(• ) of function ξt into,
respectively, the Rayleigh (I.1) or log-normal (I.5)
distribution of ζ t.

Stochastic model for sequence of storms and
weather windows

A stationary pulse-like random process is a good
model for sequence of storms and fair weather
intervals. A sample can be generated as follows:

(I.7)

where ℑ j  and Θj  are, correspondingly, the duration
of the storm and the weather window (with
threshold value Z),
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h+, h−  are the highest wave height in storm and the
minimum wave height during the weather window.
Function u(t) prescribes the shape of the non-
dimensional impulse. The triangular shape of this
function
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serves as a good first approximation. Parameter δ,
as seen from fig. I.1, defines the asymmetry of
function u(t). If δ=0.5, the function is symmetric.

The actual generation of a series of random storms
and weather windows is based on the Monte Carlo
approach. First, the distribution function FΞ(⋅) and
the matrix co-variation function KΞ(τ) are specified
which fit the set of four random values Ξ~(h+, ℑ , h−,
Θ) or time series Ξt. Secondly, a non-dimensional
storm shape function u(t) is chosen. Finally, an
ensemble of storms and weather windows is
generated numerically.

Stochastic model for extra-annual rhythms

This model is written as follows:

(I.8)

Here m(t) and σ(t) are periodic functions, and  ξ t is
a non-stationary process AP(p) so that

(I.9)

Coefficients φk  (t)= φk (t+T) are periodic functions of
time.

A model that is capable of describing the year-to-
year variability of monthly mean wave heights will
therefore require twelve values of m(t) and 78
values of K(t,τ). It is possible to reduce the number
of dimensions by considering the following
representation of PCSP:

(I.10)

Here ηk(t) are stationary random processes (com-
ponents) with mathematical expectation mk and co-
variation function Kk(τ) that can be obtained by
expressing functions m(t) and K(t,τ) as Fourier
expansion series.

Relation (I.10) resembles a Fourier series
expansion of ζ(t). However, both the coefficients
and basis functions in it depend on the time
variable, and hence (I.10) is not a Fourier
expansion. A simpler model for PCSP can
therefore be obtained by expanding the function
ξ(t) for each annual interval, as follows:

(I.11)

where  ak and bk  are random values, and q is the
order of the model.

For a stationary process it is possible to suppose
that values ak and bk are independent, while for a
non-stationary process they will be dependent.
Table I.1 gives average values of means (mak

, mbk
)

, variances (Dak
, Dbk

), co-variation Kak,bk
, and

correlation ρak, bk
 for coefficients of the model of

annual rhythms. Hence, instead of model (I.8-I.9)
with 90 parameters, a simpler model (I.11) with 20
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parameters (see Table I.1) may be used. Monthly
mean values of wave heights in the Black Sea
were used for the computations. Corresponding
values of m(t) and D(t) are shown in Fig. I.4.
Coefficient a0 in the table is equal to the annual
average wave height. Coefficients a1, a2
correspond to the cosine component of the annual
and semi-annual harmonics. Correspondingly, b1
and b2  correspond to the sine component. It
becomes obvious from the table that ak and bk are
strongly correlated. For example, the correlation
coefficient between ao and a1 is 0.66.

All above models make it possible to describe wind
waves as a multi-cyclic, multi-modulated random
process. The multi-cyclic behavior of waves
reflects the co-existence of sea and swell in the

combined wave field. Multi-modulation is related to
synoptic, seasonal, and extra-annual variability of
the averaged wave parameters. Hydrodynamic
properties of wind waves can be simulated by
models based on equations for wave action
density such as (I.4), and models (I.6) – (I.10) are
available for the statistical description of the wave
field.

At the same time, many practical computations of
extreme wave height hmax, for example offshore
and shelf engineering applications, employ the
assumption that wave height series is a sequence
of random values. The first approach of this kind is
called the method of initial distribution. It is
described in the following section.

Table I.1.
Statistical parameters of coefficients ak, bk of monthly mean wave height rhythms model (I.11).

The Black Sea

Parameter m,cm D, cm2 Kak,bk (cm2) and ρρρρak, bk

a0 a1 b1 a2 b2

a0 80 22 1 0.66 0.54 0.22 0.60
a1 19 42 20 1 0.21 0.65 0.47
b1 12 17 11 6 1 -0.26 0.52
a2 2 39 6 26 -7 1 0.15
b2 4 19 12 13 9 4 1

   Note: co-variation  Kak,bk is given below the diagonal and correlation coefficient ρak, bk is given above the diagonal.
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