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CHAPTER 10

Kinematic characteristics of the highest waves

Estimates of significant or mean wave height,
irrespective of the method of their generation, refer
to a quasi-stationary interval. The highest wave in
a quasi-stationary interval depends on its duration.
Other quantiles of wave height distribution can be
obtained in deep water using the Rayleigh (I.1) or
Forristall (I.2) distributions. In practical
applications, it is common to associate the
maximum wave height with the estimate of 0.1 %
probability. Then, for the Rayleigh distribution
h0.1%=2.96 h . An apparently more efficient
approach, however, is comprised of the three
following steps. The first step is the estimation of
the extreme storm duration for the location of
interest. The second step is the calculation of the
corresponding probability of the maximum wave
(see [Boukhanovsky et al., 1998].) Then, finally, its
height can be evaluated.

In shallow water, Glukhovsky’s distribution
[Glukhovsky, 1966] is used most often in Russia:

(10.1)

where h*= h /H is relative average wave height,
and H denotes water depth.

The Rayleigh and Forristall distributions are
theoretically unlimited and may predict
unrealistically large wave heights. Thus, a limiting
height is introduced associated with wave
breaking. The extreme height (i.e. the height at
which wave breaking occurs) is determined by an
equation from the finite amplitude wave theory
[Easson, 1997; Sarpkaya, Isaacson, 1981]:

(10.2)

where hb is the breaking wave height, g is the
acceleration of gravity, H is local water depth, τ is
the wave period.

The constants in equation (10.2) are: C1=0.02711
and C2=28.77.  Constant C1 determines the
maximum possible steepness of a finite amplitude
wave in deep water, while constant C2 reflects the
influence of shallow water effects.

For H78.0h,0H b =→ .

For 71h,H b →∞→ λ , λ being the
corresponding wavelength.

A more comprehensive description of extreme
waves should include not only wave height, but
other kinematic characteristics such as period τ,
length λ and crest height c. The conditional
distribution of wave periods for a certain height
F(τ h), which is also called associated, can be
approximated by a Weibull distribution with shape
parameters depending on the wave height and
period accordingly [Wind, 1974]. The Weibull
distribution for the conditional distribution can be
written as

(10.3)

where  hm |τ  is the regression between τ and h.

The shape parameter kh for τ|h varies from 2.62 to
7.47 [Wind, 1974]. In practice, shape parameters
do not depend on the degree of wave development
and the type of wave system. The regression

is defined as the conditional mean of one random
value (the other one is invariant), and the skedastic
ratio (conditional variance) is defined as

The behaviour of the regression and skedastic
ratios for calculated conditional distributions F(τ|h)
is presented in Fig 10.1. Similar figures have been
published in many papers (see, e.g., [Wind, 1974;
Boukhanovsky et al., 1999;  Lopatoukhin, 1974]).

The figure shows that conditional average values
of wave periods for a given wave height mτ|h
strongly depend on h and τ only for values smaller
than the average. For wave height or period
exceeding the average, these two parameters
become nearly constant. Dependence of
conditional variances Dτ|h and Dh|τ on the height
and period is seen over the whole range of
variability. A parabolic shape of the conditional
variance curve indicates that the greatest diversity
is pertinent for waves with heights close to the
distribution centre. For practical purposes, it may
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be assumed that mean wave period associated
with large waves (at least larger then the mean
wave height) is about 1.15-1.20 τ . An analysis

based on a breakdown of various wave generating
conditions would result in a wider probability
interval for the scedastic ratio.

Figure 10.1: Regression (a) and skedastic (b) ratios for the wave periods with prescribed wave he
the Black Sea. Crosses are the borders of  90% confidence interval.

In practical computations of mean period τ , which
is associated with wave heights h of a certain
probability of exceedance, parameterizations of the
conditional mean mτ|h and of its probability range
bounds (τlower, τupper) are used:

(10.4)

Davidan et al. (1978) used an extensive array of
field observations and suggested the following
approximations for the parameters in relation
(10.4): A=4.8, B=0.5.

The lower bound lowerτ  of mean wave periods
depends on wave kinematics and can be
determined using an equation for maximal wave
steepness. For example, Battjes (1972) proposed
the following relation:

(10.5)

where hs stands for significant wave height.

[Teng et al., 1993] used observations from buoys
moored off the Atlantic and Pacific coasts of the
U.S. and proposed the two following modifications
of equation (10.4):

(10.6)

Other studies (see [Chung-Chu-Teng et al., 1993])
showed that the approximation by Battjes tended
to overestimate lowerτ  while the second formula
(10.6) by Teng and co-authors (1993)
underestimated it.

The limit on the upper bound upperτ  can be
as a certain quantile of the conditional dis
of wave periods (τ|h) for a given wave he
5% probability quantile is a reasonable cho

Another useful kinematic characteristic 
spectrum is the period τp corresponding
energy peak. Buckley (1988; 1993) and Ch
Teng et al. (1993) used an equation for i
limit corresponding to a given significan
height hs.  It is equivalent to the following fo

For the upper limit (τp)upper  Buckley (1988
the following expression fitting the upper e
of an empirical data set:

The ratio of period of the spectral peak τp 
period τ  is known to vary from 1.1 to 1.4 
1979].

Classical hydrodynamics makes it pos
derive all basic kinematic parameters of th
of interest if parameters (h, τ) are kno
example, the linear theory of small am
waves, which is applicable to sufficient
waters, yields:

For shallow water areas with depth H, the
provides a transcendental equation
parameters τ, H
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(10.10)

which can be solved with respect to wavelength λ.

In locations where the water depth is comparable
to wave height, it is necessary to use
approximations of the potential theory for waves of
finite amplitude, e.g. a third-order Stokes
expansion for the velocity potential function ϕ(x,y)
(see [Aleshkov, 1996; Sretensky, 1977; Lambrakos
et al., 1974)]:

(10.11)

Here ε is the dimensionless small parameter
defined by the kinematic characteristics of the
wave, ϕ1 is the first expansion term corresponding
to a linear approximation of the potential theory of
small-amplitude progressive waves, and ϕ2 and ϕ3

are the non-linear addends corresponding to the
second and third approximations.

The free-surface ordinate ζ corresponding to
equation (10.11) with accuracy to the third
expansion term is written as [Aleshkov, 1996]:

(10.12)

where a  is the wave amplitude, χ is the wave phase,

and k is the wave number.

The phase velocity of a third-order Stokes wave is defined as:

(10.13)

The height of a Stokes wave is equal to:

(10.14)

where ( )39kHch76kHch32kHch32
kHsh64
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The crest height c and the trough depth are
determined, respectively, for χ=0 and χ=π.

The length of a Stokes wave is λ=2π/k, and its
amplitude a is determined based on the
established period ωπτ 2=  and height h by
numerical solution of the set of transcendental
equations (10.13) and (10.14).

In practice the individual wave crest (c) distribution
is provided, for example in [Haring, Heideman,
1980])  as

(10.15)

where m0 is the zeroth moment of wave spectrum.
The crest height of p% probability is estimated as a
solution to this equation with initial value cinit=0.5hp,
in accordance with the analytical solution (10.9) for
waves of infinitely small amplitude.

However, to estimate the crest height of waves at
n-year return period (n=1, 5, 10, 25, 50, and 100
years) for a shallow water area, it is recommended
that the crest of a higher-order theory of wave
profile is used.

Lambrakos and Brannon (1974) estimated wave
crest heights using the higher order Extended
Velocity Potential (EXVP) wave theory. The theory
considers a Stokes-type wave, which has front-to-
back symmetry of its crest and propagates without
deformation. The EXVP wave theory is
instrumental in determining the geometry and
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kinematics of individual waves. In the theory the
velocity potential has the form

( ) ( ) ( )[ ]txksinBzkcosht,z,x nnnn ωϕ −=∑
(10.16)

In this expression, z is positive upwards from the
seafloor, x is positive in the direction of wave
propagation, the summation is made over
n = 1,2,...,N frequencies, kn = 2π/λn is wave
number for frequency n, ωn = 2π/τn is angular wave
frequency for frequency n, λn is wave length for
frequency n, and τn is wave period for frequency n.
The input data for EXVP are the water depth H, the

wave height h, and the zero-crossing period τ of
the wave.

The tables and plots for the estimation of wave
crest are published [Sarpkaya, Isaacson 1981]. A
part of those tables is reproduced in Table 10.1.

Let us consider an example. Suppose H=17.1 m,
h=10.7 m, and τ=12.5 s.

Then from (10.2) we get hb= 12.8 m, h/hb=0.83,
and H/gτ2=0.01094.  Interpolating data in the Table
we obtain: c/h=0.766, i.e. c=8.2 m.

In real situations the ratio c/h varies in the range
from 0.50 to 0.80.

Table 10.1
Crest/wave height (c/h) ratio as a function of h/hb and H/gτ2

H/gττττ2

h/hb
0,0090 0,0140 0,0190 0,0240 0,0290 0,0340 0,0390 0,0440 0,0490 0,0540 0,0590 0,0640 0,0690

0,00 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000
0,08 0,5369 0,5262 0,5193 0,5165 0,5145 0,5130 0,5117 0,5109 0,5105 0,5102 0,5098 0,5095 0,5092
0,16 0,5724 0,5509 0,5388 0,5333 0,5294 0,5267 0,5244 0,5229 0,5221 0,5213 0,5206 0,5199 0,5193
0,24 0,6064 0,5751 0,5587 0,5505 0,5447 0,5409 0,5377 0,5356 0,5344 0,5333 0,5322 0,5313 0,5304
0,32 0,6382 0,5994 0,5792 0,5681 0,5604 0,5556 0,5514 0,5488 0,5473 0,5459 0,5447 0,5435 0,5424
0,40 0,6665 0,6234 0,5996 0,5859 0,5764 0,5704 0,5653 0,5622 0,5604 0,5588 0,5574 0,5560 0,5548
0,48 0,6926 0,6468 0,6200 0,6038 0,5925 0,5855 0,5795 0,5758 0,5737 0,5717 0,5700 0,5683 0,5669
0,56 0,7187 0,6698 0,6415 0,6227 0,6095 0,6013 0,5942 0,5898 0,5871 0,5846 0,5824 0,5803 0,5784
0,64 0,7422 0,6934 0,6643 0,6433 0,6283 0,6186 0,6103 0,6049 0,6016 0,5985 0,5957 0,5932 0,5908
0,72 0,7630 0,7178 0,6878 0,6657 0,6493 0,6381 0,6283 0,6221 0,6182 0,6147 0,6114 0,6085 0,6058
0,80 0,7811 0,7407 0,7112 0,6889 0,6718 0,6590 0,6479 0,6410 0,6369 0,6332 0,6298 0,6267 0,6238
0,88 0,7933 0,7564 0,7299 0,7090 0,6924 0,6791 0,6676 0,6604 0,6561 0,6522 0,6486 0,6454 0,6423
0,96 0,7970 0,7614 0,7371 0,7179 0,7031 0,6918 0,6821 0,6756 0,6712 0,6673 0,6636 0,6603 0,6573
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