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CHAPTER 8

Annual cycle of extreme wave heights 

Monthly mean wave heights 
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form a data set, which provides the most convenient information for studying intra–annual variations of extreme wave heights. Twelve values of monthly mean wave heights, which are observed during a year numbered i, form a sample 
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. Examination of these samples for n years, i.e. 
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, i = 1,…,n, shows that the annual extreme value of wave height 
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 can be observed during various months. Table 8.1 shows how often an annual maximum 
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h

was observed during a certain month.

Table 8.1

Frequency of occurrence (%) of annual maximum  
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in different months

Sea
Months


IX
X
XI
XII
I
II
III
IV

Baltic
3
6
34
27
17
3
10
0

Black
0
0
3
26
26
37
8
0

Mediterranean
0
0
0
7
33
34
13
13

Barents
0
10
20
20
10
30
10
0

Thus, the period, during which 
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 can occur, is almost half a year long, from autumn to the next spring. For example, during 35 years of observations the annual maximum in the SE part of the Baltic Sea took place in September in 3% of cases, and in October in 6% of cases. 

The distribution function of monthly mean extremes 
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 can be represented as a mixture:
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(8.1)

where pn is frequency of occurrence (similar to that given in Table 8.1) and Fk(x) is the distribution of monthly mean for the nth month over several years.

Monthly mean wave heights are obtained through averaging values observed at synoptic times. Therefore, we can assume that Fn(x) follows  the normal distribution. Table 8.2 gives maximum 
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 and minimum 
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 estimates of yearly extremes, yearly means m, r.m.s. deviations (, estimates of skewness (A) and kurtosis (E) for different seas.

Table 8.2.

Characteristics of monthly mean wave height extremes



Max 
Min

Sea
T
m
(
A
E
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m
(
A
E
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(years)
(m)
(m)


(m) 
(m)
(m)


(m) 

Baltic
35
1.20
0.20
0.75
0.86
1.81
0.51
0.04
-0.68
-0.45
0.41

Black
35
1.21
0.16
0.54
-0.05
1.59
0.57
0.04
-1.00
0.06
0.46

Mediterranean
15
0.99
0.16
1.42
2.20
1.45
0.48
0.03
0.70
0.48
0.42

Barents
10
1.82
0.15
0.58
-1.13
2.08
0.95
0.08
-0.73
0.36
0.77

Coefficients of skewness and kurtosis for the normal distribution are equal to zero. For T = 35 (years) the 95% confidence limits will be |A*| < 0.8 and  |E*| < 1.4, and for T = 10 (years) |A*| < 1.2, |E*| < 1.8. Only the estimates A* for 
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 in the Black Sea and (A*, E*) for 
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 in the Mediterranean Sea do not satisfy this condition. 

Quantiles xp of the normal distribution are as follows: x0.9  = 1.28, x0.95 = 1.64, x0.975=1.96, and x0.99=2.33.

Hence, we can assume for 
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 possible once in 100 years (at probability 0.99 when annual maximums were used):
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where m* and (* are corresponding estimates.

The mathematical expectation of ith order statistics x(i) for normally distributed samples is [David, 1969]:
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(8.2)

and the variance is
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(8.3)

where ((() and ((() are the function and density of the normal distribution.

In Table 8.3 values of 
[image: image17.wmf]max
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for the T year interval from Table 8.2 are compared with the corresponding quantile of the distribution and the 95% confidence range bounds of estimate xp*. The latter was computed using relations (8.2), (8.3).

Also, the table gives quantiles of the 95% probability interval for the double exponential distribution (2.5) which can be interpreted as an asymptotic approximation of the last term in the ranked sample of monthly extremes.

If the initial distribution is normal, then the distribution of extreme values will obey (2.5) with parameters a and b determined as follows [Hirtzel, 1984; Lopatoukhim et al., 1991]:
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Table  8.3.

Estimates of 
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  by initial data and models (8.2)-(8.4)

Sea
T
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Model (8.2)-(8.3)

T-year estimate
Model (2.5), (8.4)

T-year estimate


(years)
(m)
M [
[image: image20.wmf]max
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]
h0.025
h0.975
M [
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]
h0.025
h0.975

Baltic
35
1.81
1.62
1.42
1.82
1.63
1.49
1.87

Black
35
1.59
1.54
1.34
1.75
1.56
1.44
1.74

Mediterranean
15
1.45
1.27
0.87
1.66
1.28
1.15
1.49

Barents
10
2.08
1.98
1.14
2.81
2.08
1.94
2.31

It can be seen from Table 8.3 that, for T>15 years, the estimates of the order statistics x1-1/T of annual extreme values follow normal distribution fairly well and are close to the median of distribution (2.5). Confidence ranges of hmax are close to the probability intervals of the double exponential distribution (2.5).

If T(15 years, models (8.2)-(8.3) and (2.5), (8.4) lead to different estimates.  It is obvious that it is difficult to justify the use of asymptotic theory for samples of short length.

If distribution (8.1) differs considerably from the normal one, estimates of probabilistic characteristics can be obtained using the Monte-Carlo approach. The median of the simulated series of 
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in the Mediterranean Sea was estimated to be 1.39 m. The 95% probability  range was 1.26 – 1.55 m.

In a case when the frequency of occurrence pi in (8.1) is unknown, it can be computed using stochastic  models (I.8)-(I.9) or (I.10)-(I.11).

Table 8.4.

Estimates pi (%)  based on observations and simulation. The Black Sea

Month
XI
XII
I
II
III

pi, Table 8.1
3
26
26
37
8

pi*, model (I.8)-(I.9)
1
29
26
35
9

95% confidence limits
(1
(4
(4
(4
(2

Table 8.4 shows comparisons of values pi from Table 8.1 with values 
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 obtained using the model of periodically correlated random process [see (I.8)-(I.9)] for given values of mathematical expectation m(t) and covariance function K(t,().

It follows from Table 8.4 that the estimates pi and 
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 are very close and their difference does not exceed the confidence range:
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where T is the sample length (years), see Table 8.1.

There are different approaches towards description of wind wave seasonal variability. In the reports [Bacon et al., 1989; Stanton, 1984] seasonal changes of extreme waves in the Atlantic Ocean are studied. It is suggested that distribution (2.5) with periodic parameters a(t) and b(t) could be used to reproduce seasonal  variations of minimum and maximum wave heights. Then the distribution of annual maxima is represented as the product
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(8.5)

Formula (8.5) interprets the annual extreme wave height as maximum maximorum, i.e. as the maximal value of all maximal wave heights in individual months. Unlike (8.5), model (8.1) makes it possible to determine the probability pn that the annual maximum will take place during a certain month. Values pn can be estimated using observations in various seas and it also is possible to simulate them using the model of intra-annual cycles (I.8)-(I.11).

Annual variations of wind waves justify the need to consider them as a periodically correlated non-stationary random process obeying the log-normal distribution (I.5) with periodic parameters h0.5(t) and s(t). An illustration of usefulness of this approach is given in Fig I.3 showing annual variations of the h*0.5 and s*. These were computed using wave height measurements at synoptic times. In some papers [see (Athanossoulis G.A., Stephankos Ch.N., 1995; Rossouw J. et al., 1995; Stephanakos, 1999)]  similar graphs for mean wave heights and their variances are provided. 

Fig. (I.3) suggests that the function of wave height distribution at synoptic times Fh(x,t) must take intra-annual cycles into account. This can be written as follows:
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(8.6)

where Fh(x,y,() is the climatic log-normal distribution (h0.5=y, s=1/(). Variables h0.5 and s in (8.6) form a system of random numbers with a two-dimensional distribution density 
[image: image25.wmf])
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. This distribution depends on a set ((t) of parameters 
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 for location values and scales. According to [Smirnov et al., 1969] the median h0.5 is asymptotically normally distributed (see, e.g.,  [“Veter i volny” (Wind and waves), 1974]). Parameter s may be estimated by quantiles h0.25 and h0.75 as follows
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Fig 8.1 shows bi-plots of normal distribution for values 
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 and (. It can be seen that the distribution of h0.5 and of standard of wave height logarithm ( is approximated by the normal distribution.
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Figure 8.1: Normal distribution bi-plots of median h0.5  and standard deviation ( of

 wave height logarithms.  The Baltic Sea

Table 8.5 shows estimates of random values h0.5, s, distribution quantiles for different seas and  seasons. In the rows containing sea names, the time series length T (in years) is also given, as well as parameters h0.5 and s, which are calculated for the whole time series, i.e. without the seasonal cycle. The table also shows quantiles of the highest mean wave height in a season. These correspond to the first term in ranked samples hij consisting of 360 values (90 days 4 times each) per year.

Table 8.5.

Estimates of quantiles hp, mathematical expectation M (m), standard deviation ( (m),

of  median h0.5 (m), parameter s, and maximal wave height 
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 for different seas and seasons.

Variable  X denotes {h 0.5,s, 
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h

}. Data correspond to mean wave heights at synoptic times
X
Winter
Spring
Summer
Autumn


h0.5 (m)
s
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The Baltic Sea, T=35 (years), h0.5 =0.66 (m), s=1.81

5%
0.63
1.45
2.2
0.51
1.67
1.7
0.48
1.94
1.3
0.56
1.52
2.0

25%
0.68
1.56
2.7
0.55
1.86
1.9
0.52
2.11
1.5
0.66
1.68
2.4

50%
0.76
1.72
3.2
0.60
2.04
2.3
0.56
2.31
1.7
0.75
1.79
2.7

75%
0.84
1.87
3.6
0.64
2.21
2.8
0.57
2.48
1.9
0.80
1.93
3.3

95%
0.98
2.02
4.0
0.68
2.39
3.2
0.60
2.83
2.4
0.91
2.14
4.0

M[(]
0.77
1.74
3.19
0.60
2.04
2.38
0.55
2.35
1.74
0.75
1.81
2.9

( [(]
0.11
0.21
0.55
0.06
0.22
0.51
0.04
0.29
0.29
0.11
0.18
0.69

The Black Sea, T=35 (years), h0.5 =0.73 (m), s=2.45

5%
0.74
1.72
2.6
0.66
2.19
1.8
0.49
2.95
0.9
0.66
2.31
1.5

25%
0.87
2.04
2.9
0.69
2.62
1.9
0.58
3.50
1.1
0.69
2.56
1.9

50%
0.93
2.17
3.4
0.72
2.94
2.4
0.61
3.88
1.2
0.71
2.80
2.2

75%
1.00
2.24
4.1
0.76
3.28
2.7
0.63
4.07
1.4
0.74
3.01
2.8

95%
1.07
2.37
4.8
0.79
3.60
4.0
0.64
4.50
2.1
0.77
3.44
3.3

M[(]
0.92
2.13
3.59
0.73
2.94
2.58
0.60
3.81
1.29
0.72
2.83
2.38

( [(]
0.10
0.20
0.85
0.05
0.44
0.73
0.04
0.45
0.34
0.04
0.35
0.60

Mediterranean Sea, T=15 (years), h0.5 =0.60 (m), s=2.61

5%
0.63
1.82
1.9
0.59
2.25
1.5
0.45
3.79
0.8
0.50
2.60
1.40

25%
0.69
2.07
2.7
0.63
2.67
1.8
0.49
3.97
0.9
0.52
3.02
1.50

50%
0.73
2.21
3.0
0.64
2.83
2.1
0.51
4.18
1.0
0.54
3.27
1.90

75%
0.77
2.28
3.2
0.66
2.92
2.2
0.52
4.59
1.1
0.56
3.44
1.90

95%
0.89
2.74
3.8
0.70
3.13
2.8
0.55
4.98
1.3
0.57
3.61
2.40

M[(]
0.75
2.27
3.03
0.65
2.80
2.12
0.51
4.36
1.03
0.54
3.29
1.89

( [(]
0.09
0.30
0.53
0.03
0.23
0.42
0.03
0.46
0.15
0.02
0.40
0.42

Caspian Sea, T=39 (years), h0.5=0.65 (m), s=2.46

5%
0.62
1.92
1.5
0.59
2.19
1.4
0.52
2.60
1.0
0.60
2.03
1.4

25%
0.67
2.08
2.0
0.63
2.44
1.7
0.55
2.76
1.0
0.62
2.34
1.7

50%
0.72
2.27
2.2
0.66
2.65
1.9
0.56
2.92
1.2
0.64
2.56
1.9

75%
0.77
2.49
2.6
0.71
2.90
2.2
0.58
3.08
1.3
0.69
2.83
2.0

95%
0.84
2.82
3.1
0.74
3.16
2.7
0.63
3.32
1.5
0.79
3.08
2.8

M[(]
0.73
2.34
2.33
0.67
2.67
1.96
0.57
2.93
1.19
0.66
1.94
1.94

( [(]
0.07
0.30
0.47
0.05
0.31
0.39
0.03
0.22
0.20
0.06
0.42
0.42

Probability bounds for the seasonal maximum hmax can be considered as the seasonal maximum wave heights that can occur once in T years. Therefore, the 90% probability margin can be taken as an estimate of 10 – year wave height for a particular season, while the 99% probability margin corresponds to the hundred-year wave height. There are several ways to estimate these, including using formulae (2.5) and (8.4) for first elements of the ranked sample of 360 elements. At the same time, the quantile corresponding to exceedance rate q in distribution (8.5) can be considered as a deterministic function of random arguments h0.5, (
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(8.7)

where Uq is the quantile that corresponds to exceedance rate q for the normal distribution.

Using a statistical linearization method one can obtain from (8.7) the following estimates for mathematical expectation and variance:
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where ( is the correlation between values h0.5 and (. These estimates make it possible to employ data from Table 8.5 and derive parametric estimates for the probabilistic interval hmax.

Adequate utilization of estimates (8.3) or (8.8) requires taking into account correlation between elements in the sample. As a first approximation this can be done via transformation towards number (2.15) of “conditionally independent” measurements 
[image: image35.wmf]n
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. Thus, if one takes 
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=1 for the Baltic Sea (i.e. uses all 6-hour interval data), then relation (8.8) predicts mh=3.7 m for winter season. If 
[image: image37.wmf]n
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=2 (corresponding to 12-hour intervals), then mh=3.3 m. The sample data correspond to mh*=3.2 m. 

Table 8.6 gives estimates of mathematical expectation M[h] and bounds for the 90% 


probability intervals of seasonal extreme values h5%, h95% of wave height at synoptic times, which were constructed using the following methods:

· Method “A”. Non-parametric range estimate that interprets hmax as the limiting element of the log-normal sample (I.4), (8.2), (8.3);

· Method “B”. Parametric range estimate where hmax is understood as a random value with asymptotic distribution (2.5) and parameters (2.10);

· Method “C”. Parametric range estimate, in which hmax is considered as a deterministic function of random argument (8.7);

· Method «D». An ensemble of elements that satisfies (8.5) is simulated by stochastic  model (6.9).

The direct computation of probabilistic ranges for distribution (8.5) requires considerable effort. Also, additional approximations of functions under the integral are needed. As a result, it is better to simulate them using a stochastic model. The simulations  represent the impulse-like behavior of random maximum wave heights h+ in storms at the synoptic range (see distribution F(h,y,z) in (8.6)) with parameters y,z of distribution 
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Table 8.6.

Point-wise estimates of seasonal maxima of mean wave heights at synoptic times and their 90% probability intervals  (h5% - h95% ) computed by  methods «A», «B», «C», «D». The Baltic Sea

Method
Winter
Spring
Summer
Autumn


h5%
M[h]
h95%
h5%
M[h]
h95%
h5%
M[h]
h95%
h5%
M[h]
h95%

«A»
2.3
3.3
4.5
1.6
2.1
2.6
1.3
1.6
1.9
1.1
2.5
3.9

«B»
2.5
3.5
4.9
1.6
2.1
2.9
1.4
1.7
2.3
2.0
2.7
3.6

«C»
2.3
3.3
4.4
1.5
2.1
2.7
1.2
1.6
2.0
1.5
2.5
3.5

«D»
2.1
3.0
4.2
1.4
2.1
3.3
1.1
1.5
2.1
2.0
2.8
3.8

Data from table 8.5
2.2
3.2
4.0
1.7
2.4
3.2
1.3
1.7
2.4
2.0
2.9
4.0

Table 8.7

Seasonal maxima of wave heights simulated using IDM with 
[image: image39.wmf]n

ˆ

=4 (one record in a day). The Baltic Sea
T
Seasonal extreme values (m)
Annual extreme 

(years)
Winter
Spring
Summer
Autumn
values (m)

50 
5.7
3.3
2.5
5.2
5.6

100 
6.4
3.7
2.7
5.7
6.1

A comparison of data with results in Table 8.5 suggests that methods «A»-«D» may lead to significant differences in the estimates. However, in general, they all provide reasonable values of hmax.

Values of h95% in Table 8.6 can be understood as the seasonal maximum wave height at 20 year return period. Table 8.7 shows estimates of waves at longer return periods (namely, 50 and 100 year). These were obtained with the Initial Distribution Method with mean values of parameters h0.5 and s as given in Table 8.5. It is obvious from the table that annual maxima corresponding to 50 and 100 years return periods take place mostly in winter. The fact that the “winter” estimates are slightly larger than the annual maxima illustrates the sensitivity of the IDM results to variations of parameter s. When it comes to actual applications, estimates of seasonal and annual extreme wave heights must correspond to each other precisely.
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