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CHAPTER 6

Storms and weather windows

The synoptic variability of wind waves is traced
back to the frequency of passage of atmospheric
disturbances, their strength, the duration of their
action on the water surface and the geographic
properties of the area. The variability manifests
itself as a sequence of alternating storms and
weather windows, which can be represented
formally (see Fig. I.1) as a sequence of positive (a
storm) and negative (a weather window)
fluctuations of the random process ξ(t) relative to
some fixed value Z.

Let h(t) denote wave heights measured at synoptic
observation times. ℑ  and Θ denote the duration of
a period when wave height deviations from Z were
positive and negative, respectively.

Then the maximum wave height during the storm
is

(6.1)

The minimal wave height during the weather
window is

(6,2)

A system of the four interconnected random
variables Ξ = (h+, h–, ℑ , Θ) can be used to
parameterize the pulse-like stochastic process
shown in fig. I.1.

Table 6.1 gives a description of the data series that
were used to study the synoptic variability of wind
wave heights [Rozhkov et al., 1999;
Boukhanovsky, Lavrenov et al., 1999].

Table 6.1.
Data used in computation of storms and weather windows

Parameters of distribution (I.5)

Sea ϕϕϕϕ , λλλλ Depth,
(m)

Record
Length,
years

Annual
means Winter Spring Summer Autumn

h0.5,
(cm) s h0.5

(cm), s
h0.5

(cm), s
h0.5

(cm), s
h0.5

(cm), s

Baltic 55°20'
20°30' 30 1957-1991 66 1.8 77

1.7
60
2.0

55
2.3

75
1.8

Black 43°10'
34°00' 2200 1954-1988 73 2.5 92

2.1
73
2.9

60
3.8

72
2.8

Mediterranean 35°10'
35°05' 1070 1980-1994 60 2.6 75

2.2
65
2.8

51
4.3

54
3.2

Barents 71°05'
35°09' 180 1980-1989 119 2.0 143

2.2
115
2.1

97
2.2

129
2.1

For h(t) a multi-year long (10-35 years) time series
of mean wave height was taken as simulated by a
wave model. The model was driven at regular
synoptic times by gridded atmospheric pressure
fields. The computations represented a variety of
physiographic conditions in internal and marginal
seas.

Table 6.2 provides mean (m) and root mean
square deviation (σ) values of four-variable random
functions Ξ that were computed using samples
from a sequence of storms (from 150 to 1000
storms).

The threshold value Z was taken, correspondingly,
equals to quantiles h0.5, h0.25, h0.75, h0.9. The
breakdown of values is done by seasons, so that
synoptic variations of the wind wave fields are
described taking into account the annual cycle.

It can be seen from the table 6.2 that for Z=h0.5 the
average storm duration ℑ  is two days, while the
average duration of weather window Θ is 2−3
days. For larger values of Z, such as h0.75, ℑ  is
reduced to one day, and Θ increases.

Random functions ℑ  and Θ represent duration of
over-shots and under-shots. Therefore their
distributions should asymptotically tend to the
exponential law [Leadbetter, 1986]:

(6.3)

Figs. 6.1 and 6.2 depict quantiles of distributions
F*(ℑ ) and F*(Θ) as the q-q bi-plots. It can be seen
that the hypothesis that F*(x) belongs to a class of
exponential distributions is confirmed. Hence m
and σ should be nearly equal (as seen from Table
6.2). Table. 6.3 gives correlation coefficients
between different random functions in system Ξ.
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Table 6.2
Estimates of means (m) and r.m.s. (σ of the highest mean waves h+ in storms, lowest mean waves h– in

weather windows, duration of storms ℑ � and duration of weather windows Θ for thresholds Z that
correspond to different quantiles of wave height climatic distributions (left column)

Z, h+, (cm) h–, (cm) ℑℑℑℑ , (hours) ΘΘΘΘ, (hours)% (cm) m σ m σ m σ m σ
N

WINTER (XII,I,II)
Baltic sea

25% 53 124 75 37 12 72 79 31 32 653
50% 77 145 73 43 17 55 56 59 60 615
75% 114 185 66 54 30 39 37 111 125 434

Black sea
50% 92 175 76 61 17 46 38 58 57 656
75% 126 200 72 67 25 34 28 92 95 517

SPRING (III,IV,V)
Baltic sea

25% 43 92 52 32 9 70 76 28 26 793
50% 60 105 49 40 15 40 41 57 60 792
75% 83 131 51 40 21 34 33 130 148 482

Black sea
50% 73 110 49 55 11 37 40 61 62 794
75% 91 141 54 56 18 33 34 159 188 409

SUMMER (VI,VII,VIII)
Baltic sea

25% 42 80 34 32 10 61 59 30 30 852
50% 55 84 32 36 12 43 42 42 43 915
75% 74 104 32 38 18 31 27 115 126 518

Black sea
50% 60 80 17 49 11 39 39 61 71 806
75% 72 88 17 52 15 28 26 120 158 558

AUTUMN (IX,X,XI)
Baltic sea

25% 51 117 71 37 11 75 88 33 30 704
50% 75 139 68 44 17 56 61 64 70 623
75% 109 173 63 54 27 43 39 106 131 480

Black sea
50% 72 110 45 55 13 38 36 59 62 751
75% 91 141 47 56 18 34 28 132 146 393

Figure 6.1. Empirical distribution of storm duration
F(ℑ ) /quantile bi-plot of exponential distribution

(6.3)/. The Baltic Sea.

Figure 6.2. Empirical distribution of weather
window duration F(Θ) /quantile bi-plot of

exponential distribution (6.3)/. The Baltic Sea.
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Table 6.3
Correlation coefficients ρ between impulse parameters

Values (h+,h–) (h+,ΘΘΘΘ) (h–,ℑℑℑℑ ) (ℑℑℑℑ ,ΘΘΘΘ) (h+,ℑℑℑℑ ) (h–,ΘΘΘΘ)

ρρρρ -0.1÷0.15 -0.15÷0.05 -0.1÷0.1 -0.1÷0.1 0.5÷0.8 -0.55÷-0.7

Hence, in the first approximation it is possible to
consider parameters (h+, h−), (h+,Θ), (h−,ℑ ), (ℑ ,Θ)
independent while parameters (h−, Θ), (h+,ℑ ) are
dependent because their correlation coefficient is
in the range of 0.5−0.8.

Hence, the four-dimensional distribution F(h+, h−,
ℑ  , Θ) can be expressed as a product of two two-
dimensional distributions F(h+, ℑ ) and F(h−,Θ),
each of them being equal to

(6.4)

i.e. to multiplication of the marginal distribution F(x)
and conditional distribution F(y|x) where x = {ℑ ,Θ}
and y = {h+, h−}.

It follows from definitions (6.1) and (6.2), that the
values h+ and h– are extreme values in a sample,
so the asymptotic distributions of F(h+) and F(h– )
are close to relations (2.2) - (2.4).

For example, the distribution of h+ should
asymptotically tend towards

(6.5)

where A(ℑ ) and B(ℑ ) are parameters depending on
the conditional moments m(ℑ ), σ(ℑ ) via the
following relations

(6.6)

Empirical conditional distributions F(h+|ℑ ) are
compared with approximation (6.5) in Fig. 6.3. It
can be seen that approximation (6.5) is
acceptable. Parameters A and B for various seas
are presented in Table 6.4.

In [Angelides et al., 1981; Boukhanovsky,
Lopatoukhin, Ryabinin, 1998] distributions of h+ are
approximated using a family of 3-parameter
Weibull distributions

(6.7)

where the third parameter Z determines the
threshold, and two first parameters A and B are
estimated using data in the sample. In those
papers a constant value Z=1.0 m was adopted for
all seasons. Distribution (6.5) with parameters A
and B from Table 6.4, which are dependant on
season, function ℑ , and on variable Z, is more
accurate than the previous approximation (6.7).

Figure 6.3. Empirical conditional distribution h+ (m) of highest waves in storms of different duration
ℑ /quantile bi-plot of distribution (6.5)/, a: ℑ  ≤ 50 hours, b: 50 < ℑ  ≤ 100 hours. Baltic Sea.
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Table 6.4.
Parameters A and B of distribution (6.5) for cold and warm seasons and various seas

Winter Summer Winter Summerℑℑℑℑ ,
(hours) A, (m) B, (m) A, (m) B, (m) A, (m) B, (m) A, (m) B, (m)

The Black Sea The Mediterranean Sea
0-25 0.19 0.24 0.06 0.05 0.12 0.17 0.04 0.05
25-50 0.51 0.61 0.11 0.12 0.43 0.48 0.09 0.12
50-75 0.60 0.53 0.10 0.12 0.56 0.66 0.13 0.12
>75 0.71 0.60 0.08 0.19 0.50 0.37 0.09 0.08

The Baltic Sea The Barents Sea
0-25 0.18 0.19 0.07 0.10 0.22 0.15 0.14 0.12
25-50 0.42 0.48 0.18 0.23 0.45 0.57 0.33 0.39
50-75 0.54 0.57 0.16 0.29 0.52 0.51 0.53 0.34
>75 0.71 0.67 0.16 0.19 0.52 0.37 0.28 0.37

The Monte-Carlo approach and use of expressions
(6.3)-(6.5) make it possible to reproduce the whole
variety  of values of function Ξ:

(6.8)

Here { })k(
iγ denotes a system of four pseudo-

random numbers.

Using a sample of Ξ as a set of impulse
parameters in expression (I.7) one can get a
stochastic  model for a sequence of storms and
weather windows. Fig. 6.4 compares correlation
functions K*(τ) computed by empirical data and
impulse model (I.7) with the parameters estimated
by (6.8). The similarity between correlation
functions of the simulated process and empirical
data depends, in a general case, on the shape of
the impulse, the correlation  between parameters

Ξ = (h+,h−,ℑ ,Θ)t, and on the probability dis-
tributions Ξt, Ξs for various thresholds.

The correlograms in fig. 6.4 are computed using
the impulse process model (I.7) accounting for the
correlation (6.8) between parameters Ξ but not the
correlation between Ξt and Ξs of the sequence of
impulses. The figures show good agreement
between variances of the simulated and observed
process and times of the first zero level crossing.

Let us consider the dependence between two
consecutive impulses using a storm classification
based on instrumental wave observations in the
Black Sea. The data came from a directional wave-
rider installed at depth of about 85 m off the town
of Gelendzhik. The measurements were recorded
every three hours, and every hour during storms.
The duration of each record is 20 minutes. The
total duration of the series is approximately three
years, and it contains more than 6000 wave height
records ranging from 0 up to 8.5 m.

Figure 6.4. Estimates of wave height correlation function on synoptic time scales for Baltic (I)
 and Black (II) Seas. 1: impulse model , 2: empirical data
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The data analysis shows that storm shapes are
quite diverse and there are many ways to classify
them. The classification results will depend
significantly on the selection of Z. For smaller
values of Z, shapes are increasingly variable, while
for larger values of Z they become more uniform.

In [Boukhanovsky, Lavrenov, et al., 1999] five
storm classes were specified (see Table 6.5). The
dominating categories correspond to fully
developed seas (I), and to wind waves not fully
developed due to limitations of fetch or wind
duration (II). The categories III and IV correspond
to combined waves.

Storms of category V, which are defined as series
of storms with wave heights exceeding a threshold
Z, usually have the longest duration. Doubling of Z
leads to almost complete disappearance of storm
category V so that only four first categories remain.

B.V. Divinsky used methods of discriminant
analysis and came up with a more detailed
classification of storms than is given in Table 6.5.
He proposed eight types of storms for wave
heights exceeding mean seasonal wave height
h=Z and four types for wave heights exceeding
h=2Z and h=3Z. These are given in Table 6.6.
Further, B.V. Divinsky considered the
correspondence between each storm type and
dominating meteorological conditions. It is worth
mentioning that, in spite of differences in the
classification methods, the whole set of storm
shapes for wave heights exceeding h=2Z fell
almost similarly into four groups. Some differences
in percentage in Tables 6.5.and 6.6 are due to
varying criteria for attributing a storm to a certain
category.

Weather windows can also be classified similarly.
Table 6.7 shows a corresponding classification
proposed by B.V. Divinsky.

Table 6.5
A classification of storm shapes

Category Non-dimensional
shape

Threshold Z=1.0 ( )th  where  ( )th
is  seasonal mean wave height

Threshold Z=2.0 ( )th   where ( )th  is
seasonal mean wave height

abscissa is (t-
tb)/ℑℑℑℑ ,

ordinate is h/h+
P, % N

Wave
height  h

(cm)
Duration
S (hour) P, % N

Wave
height  h

(cm)
Duration  S

(hour)

I 50% 110

h95%=207
mh=61
σh=57

h5%=21

S95%=45.5
mS=11.0
σS=14.2
S5%=1.0

49% 78

h95%=241
mh=105
σh=59

h5%=44

S95%=25.8
mS=6.9
σS=8.0

S5%=0.7

II 15% 33

h95%=203
mh=84
σh=54

h5%=22

S95%=71.7
mS=28.7
σS=22.4
S5%=5.0

24% 38

h95%=267
mh=121
σh=63

h5%=43

S95%=38.3
mS=14.8
σS=10.3
S5%=1.8

III 6% 13

h95%=273
mh=138
σh=75

h5%=33

S95%=95.5
mS=44.9
σS=25.4
S5%=8.5

13% 20

h95%=207
mh=137
σh=61

h5%=66

S95%=36.0
mS=19.6
σS=11.0
S5%=5.0

IV 19% 41

h95%=273
mh=108
�h=63
h5%=44

S95%=82.5
mS=40.9
�S=23.3
S5%=12.2

13% 20

h95%=277
mh=134
�h=60
h5%=42

S95%=110.5
mS=34.0
�S=25.1
S5%=3.5

V 10% 22

h95%=197
mh=104
�h=64
h5%=31

S95%=135.
8

mS=70.0
�S=41.5
S5%=9.5

1% 2

h95%=181
mh=181

�h=1
h5%=180

S95%=184.5
mS=118.8
�S=65.7
S5%=53.1
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Table 6.6
A classification of storm shapes based on discriminant analysis

Threshold
1h 2h 3h 1h 2h 3hType Shape Description
Number of  storms %

I Monotonic increase and decrease of
wind 39 21 14 20.3 23.1 41.2

II
Stable wind at phase of maximal
storm development 40 39 4 20.8 42.9 11.8

III
Duration of increase is considerably
longer than one of decrease. This
type is specific for “slow” storms

33 16 7 17.1 17.6 20.6

IV
Expressed asymmetry of the shape
with domination of the decrease
phase. This type is specific for “quick”
storms

37 15 9 19.3 16.4 26.4

V

The discriminant analysis gives a
separate type for this storm shape. It
bears some similarity to type IV. This
shape is typical for fast and deep
cyclones

12 * * 6.3 * *

VI
Intermittent increase and decrease of
waves caused by instabilities of the
atmospheric flow. They are typical for
a shallow or a slow moving cyclone

8 * * 4.2 * *

VII

Passage of a deep cyclone with
distinct separation of fronts.
Depending on the cyclone track wind
wave field either develops having
swell as its background or generates
swell as a residual signal

19 * * 9.9 * *

VIII
A “chain” of storms, which cannot be
separated due to small threshold
value of Z

4 * * 2.1 * *

A matrix of probabilities that a certain storm
category in Table 6.5 (for h=Z) will transform into
another category is shown in Table 6.8 It follows
from the table that there is some weak correlation
between categories  of consecutive storms.

The annual cycle of storms manifests itself in
variations of monthly mean wave height )(th
between seasons. Also, synoptic variability is
higher in winter than in summer.

Such cyclical variations can be expressed as

(6.9)

where m(t) is the multi-year norm (i.e. annually
averaged value) of mean wave height. It is equal to
the mathematical expectation of the periodically
correlated random process. σ(t) is r.m.s. deviation
of monthly mean wave heights from m(t). The
process ξ(t) can be modelled by (I.8)-(I.9) or (I.10)-
(I.11). Lastly, η(t) is an impulse-like random
process, which can be represented by (I.7) with
parameters (6.8).

( ) ( ) ( ) ( )[ ]tttmt t ηξσξ ++=
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Table 6.7
A classification of weather windows

Threshold

1h 2h 3h 1h 2h 3hType Shape Description
Number of weather

windows %

I Smooth decrease and then increase
of storm activity 31 22 16 14.9 22.2 47.1

II
Wind waves in the “window” are
much weaker than the selected

threshold value h
67 17 14 32.2 17.2 41.2

III
Gradual increase of storm activity or

result of passage of a chain of
storms with different tracks

39 14 * 18.8 14.1 *

IV Strong residual wave field that is
decaying after storm passage 49 16 * 23.6 16.2 *

V Wave heights close to the threshold
value h 22 30 4 10.5 30.3 11.7

Table 6.8.
Probability matrix of transformation of one storm category  into another

Storm category I II III IV V
I 0.5 0.1 0.1 0.2 0.1
II 0.3 0.1 0.2 0.2 0.2
III 0.6 0.2 0.1 0.1 ---
IV 0.3 0.2 0.2 0.3 ---
V 0.2 0.3 0.2 0.4 ---

---oooOooo---
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