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CHAPTER 5

Peak Over Threshold Method (POT)

The Initial Distribution or MENU methods require
rather long data series for estimation of hmax . If the
number of years is denoted by n, and number of
observations per day is denoted by m then the
total length of the series will be N. For example, for
n = 30, m= 4, .44000365430 ≈⋅⋅=N  The Annual
Maximum Method (AMS) excludes from the
analysis those storms that are not the strongest in
a particular year but could be the strongest in other
years. This is one reason why the Peak-Over-
Threshold method is used in estimating the highest
wind waves [Muir L.R., El-Shaarovi, 1986]. The
method is based on studying the sample of hmax for
the k strongest storms observed during n years.
The selection of the k strongest storms requires
the biggest effort in POT and is its most subjective
procedure. As a rule, the first step is the selection
of a large number of storms, for which hmax is
determined. In the following step only the strongest
storms are considered. Usually, 20-30 storms are
taken for a 30-40 year long interval.

It is assumed in the POT method that there is no
dependence between wave heights in consecutive
storms (i.e. wave heights in different storms are
not correlated). Then the distribution function for
maximum wave heights can be written as follows:

(5.1)

where G(h) is the distribution for wave heights
exceeding a predefined threshold Z during a year

and pk is distribution within a year of the number of
storms during which maximum wave height
exceeded Z. The Poisson distribution (1.6) is
always used for pk for sufficiently large values of Z.

In a particular case, when one can clearly see that
storminess during the period of observations
underwent considerable year-to-year variability,
the geometrical distribution is a good approxi-
mation for pk:

(5.2)

where p0 is the probability of occurrence of years
when waves are below threshold Z.

If the case (h ≥ Z) is not rare (i.e. for small values
of Z), one can use for pk the  truncated normal
distribution:

(5.3)

with parameters λ, σ, c.

Table 5.1 gives, as an example, statistical
characteristics of number of strong storms in
various seas. They were derived with values of Z
that were equal to two-three times the annual
mean wave height.

Table 5.1.
Probability of occurrence pk (%), mean values of  k and r.m.s deviation σk

of the number of strong storms k in a year

pk, %
Sea, number of years

k=0 k=1 k=2 k=3 k=4 k=5 k σσσσk

Baltic Sea, 35 years 37 34 17 6 5 1 1.09 1.16
Barents Sea, 41 years 37 27 24 10 2 – 1.15 1.12
Black Sea, 35 years 23 26 31 9 6 5 1.66 1.42
Caspian sea, 39 years 46 21 28 5 – – 0.92 1.00

The table reveals marked inter-annual variability of
strong storm numbers. For example, in 46% of
years there were no strong storms in the Caspian
Sea. The two last columns in the table contain
values of k  and σk that are close to each other.
This means that the Poisson distribution is a good
approximation for this case.

Summing up the infinite series (5.1) for the
distribution of storm numbers (1.6), (5.2), and (5.3)
will lead, respectively, to
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(5.6)

For G(h) double exponential see (2.2) or Weibull,
see (2.3), distributions are used the most often, as
follows:

(5.7)

(5.8)

where A, B and C are parameters.

Substituting (5.7) or (5.8) into (5.4)−(5.6) one can
obtain at least six types of combined distributions.
The Poisson – Gumbel distribution shown in (5.9)
below is the most widely used.

(5.9)

It follows from (5.3)–(5.5) that transformation of
G(h) into F(h) is relatively straightforward. At the
same time, the actual form of pk and parameters
(λ,σ) affect the value of quantile hp.  There is some
freedom in the interpretation of distribution G(h) as
probability P{h≥Z}.

One can include in the analysis all wave height
observations exceeding Z during a single storm
(i.e. when there are several cases where h ≥ Z
during a single storm) or, to represent the storm in
the sample by its single maximum wave height
h(t).

The difference between corresponding empirical
distributions (h > Z) and (h+ > Z) is shown in
Fig. 5.1 (q-q bi-plots of (5.7)).

Figure 5.1 Biplots of Gumbel distribution and observed distributions G(h) in storms with maximum
 wave heights exceeding Z = 2.0 m and Z = 1.0 m. The Baltic Sea.

Straight line shows the theoretical expression. Sign o shows all values exceeding a predefined threshold.
Sign + shows the single highest waves in a storm (i.e. one wave for a storm).

It can be seen that even for sufficiently small
values of Z  (Z = 1(m)) both distributions are
approximated fairly well by the Gumbel distribution
(except for the utmost “left tail” of data). In the case
when Function G(h) is determined using wave
heights at all synoptic observation times (i.e. more
than once in a storm), the “left tail” is given more
weight  and, hence estimates of long return period
waves are lower in comparison with G(h)
computed using the wave heights h+, which were
counted only once and therefore coincided with
maxima in the storms.

In computations of wave heights, the sample
should include only the highest waves in all
selected storms. The wave height hmax with return
period of T years is taken to be equal to the
quantile hp, p=(1–1/T)% of distribution F(h).

According to (5.9) this distribution depends on the
mean number λ of storms in a year, which, in turn,
depends on the threshold value Z. Thus, hp
(including hmax as its particular case) is a function
of Z. It follows from (5.9) that:

(5.10)

where N is number of storms in T years.
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The results of computations using relation (5.10)
are shown in Fig. 5.2.

Figure 5.2. hmax (at 100 year return period ) versus
Z for the Gumbel distribution

It follows from (5.10) and Fig. 5.2 that quantile hp in
the POT method decreases as Z  increases.

Further, it follows from Table 5.1 that function pk in
relation (5.1) can be computed using the Poisson
distribution (1.6). Then it is possible to derive the
following relation between T and F(h):

(5.11)

The uncertainty range for estimate hp computed
using relation (5.10) can be derived via (5.11) and
(5.9). It is related to the random nature of
estimates A* and B* in (5.7) and (5.9) and, as well,
to the same random nature of estimates λ* in (1.6).
This means that the POT method gives the “true”
value of hmax that is located in a two - dimensional

area of uncertainty range. The first co-ordinate of
this area characterises the possible range of
estimates hp* in terms of wave height (due to
uncertainty in A* and B*) while the other is related
to uncertainty in p* (due to variations of λ* resulting
from using data for a limited number of storms).
These areas are shown in Fig. 5.3.

Thus, the POT method estimates depend on the
choice of approximations for corresponding
distributions. Of course, estimates obtained using
other methods do also. However, unlike other
methods, in the POT approach the uncertainty is
connected both with the wave height *

ph  and
return period. For example, the 25 year wave
height estimate in Fig.5.3 is found to be in the
range of 7.2 – 8.4 (m), and return period is in the
range of 20-45 years.

Figure 5.3. Joint uncertainty ranges of POT
significant wave height estimates at return periods

of 25, 50, and 100 years.
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