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CHAPTER 4

MENU ( MEan Number of Up-crossings) Method

The highest wave hmax is observed when a storm is
passing the point of observations. To estimate it
we have to consider waves as a random process.
Let us denote the wave height series as ξ(t). A
storm takes place when ξ(t), t∈ [tb,te) exceeds Z,
and hmax is the maximum value of  ξ(t) ≥ Z within
interval (tb,te), see Fig.I.1.

The function ξ(t) can cross level Z having positive
ξ'(t) > 0 or negative ξ'(t) < 0 derivative. At the
beginning (index b) and ending (index e) times we
have ξ'(tb) > 0, ξ'(te) < 0.  At a point of maximum

and minimum function ξ(t) has zero derivative
ξ'(t )= 0, and it reaches its maximum at time t if in
the vicinity of this value of t the second derivative
is negative, ξ"(t) < 0. Thus it is possible to employ
the theory of impulses (see [Tikhonov, et all,
1987]) to derive the distribution of extreme values
of random process ξ(t). To do so, we need to know
the joint distribution density f(ξ,ξ', ξ")[Rice, 1944].

For a stationary Gaussian process ξ(t) with
mathematical expectation mξ=0 and co-variance
function ( ) ( )τρστ ξξ

2K =  this distribution reads as
follows:

(4.1)
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It follows from (4.1) that maximum ξm  distribution density reads [Longuet-Higgins, 1957]

(4.2)

where Φ(x) is the probability integral.

A random process η(t) obeying the log-normal distribution (I.5) can be examined in terms of functionally
transformed Gaussian process variables:

η(t) = exp[ξ(t)],             ln η(t) = ξ(t)     (4.3)

Then the maximum distribution density ηm will be:

(4.4)
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η′′  are second and fourth derivatives

of function Kη(τ) at τ = 0.

The largest maximum amongst all ξm (or ηm) is
called the absolute maximum and we consider it
equal to hmax. The distribution of hmax tends to the

same three types of distribution (see (2.2-2.4)) as
does the distribution of the maximum value in a
sample of independent random values [Leadbetter
et al., 1986].

Another possible approach to determination of hmax
for random process ξ(t) uses dependence of value
h on the time t needed to reach this value for the
first time (i.e. the first up-crossing). A formal
solution to this problem was derived in 1933 by
L.S. Pontriagin  for the Markov processes only.
Nevertheless, there are some relations between
the mean value of t and other characteristics of
extreme values such as the average number of up-
crossings of value h by function ξ(t). Athanassoulis
et al., [1995a, 1995b] used these relations to
estimate hmax on the basis of time series of wave
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heights taken at standard observation times. The
series was represented as periodically correlated
stochastic process (PCSP):

(4.5)

where the first expansion coefficient represents the
linear trend, m is seasonal variation of the
parameter X mean value, s is the seasonal
variation of standard deviation, and W is a
stationary random process (in a general case it is a
non-Gaussian process).

This method is called MENU (MEan Number of Up-
crossings). It relates extreme value of any wind
wave parameter possible once in T years to a
certain value x*. At this value the mathematical
expectation M(x*; t, t+T), i.e. the mean number of
up-crossings of value x* by random process X(t,γ)
during time interval [t; t+T], will be equal to one.
Here γ is a sample number such as, say, 1960-
1999. For brevity we shall omit parameter γ in
further formulae. The process X(t) can represent
any random parameter related to waves such as
height, period, any other distribution parameter,
etc. Nevertheless, the most useful application of
this method is associated with processing  of wave
heights or any function related to wave heights
(e.g. wave height logarithms).

The function M(x*; t1, t2) can be represented
as follows:

(4.6)

and therefore its computation requires knowledge
of ( )yxf tt ,

21 , , i.e. the joint distribution density of
the process X(t1) and its derivative Y(t2), which, in
accordance with (4.5), could be expressed through
distribution density f W,W'.

The approximation of f W,W' (x,y) in [Athanassoulis
et al., 1994] was based on the Plackett distribution
[Plackett,1965]

(4.7)

where parameter ψ is related to the correlation
coefficient ρxy via the following formula:

(4.8)

Correlation coefficient or parameter ψ could be
estimated directly from the data or in accordance
with maximum likelihood method.
Hence, the MENU method determines extreme
values through solving the equation

(4.9)

To solve the integral equation (4.9) in a general
case, requires integration with respect to time, for
rather long ranges, and taking an improper integral
with respect to the other variable X. In practice,
however, a simplified approach is used, which
supposes that W is a Gaussian random process
[Athanassoulis et al., 1995a].

This approach makes it possible to take the
integral with respect to variable X analytically. The
simplification is valid if the original wave height
time series, which is used to compute the extreme
wave heights, is distributed log-normally with
sufficient accuracy. This is particularly important for
the “tail” of the distribution.

Then, assuming that X(t) = ln(h), equation (4.9)
takes the following form [Athanassoulis et al.,
1995a]:

(4.10)

where

In the above relations x* denotes the up-crossing
level (the wave height) occurring once in time T.
Functions σ and m are, respectively, the standard
deviation and mathematical expectation that can
be obtained from (4.5) using an approximation with
low order Fourier expansion. The standard error

function is called “erf”, as usual.  Therefore, if we
have any multi-year time series {X(t), 0≤ t ≤Tend}
where X may be h(t) or ln(h(t)+c), then the MENU
method can lead to the following simplified
procedure of estimation of return period T
associated with the level x*. The procedure
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involves several steps [Athanassoulis,1995,
Stephanakos, 1999]:

1. Reindexing of X(t) series as follows:

    ( ){ }ααα Tt0,J,,2,1j,t,jX ≤≤= !

    αT = 365 × 24 (hours) is one year

( ) tTK,,2,1k,t2
1ktk ∆∆ αα ==−= !  where ∆t

is the sampling interval.

2. Making the time series trend-free

a) Obtaining the sequence of mean annual
values

b) Fitting the data points to linear function

c) Deleting the trend ( ) ( ) ( )tXtXtY tr−=

3. Derivation of seasonal characteristic

(4.11)

4. Low-order Fourier series representation for m
(order µ – 1) and s (order σ – 3). See Fig.4.1.

5. Time series decomposition in accordance with
(4.5)

(4.12)

6. Obtaining the joint probability density f(X,X')

(4.13)

Considering the density of (W,W'), there are
several ways to model it:

a) Use bi-variate Plackett model (4.7) - (4.8)
with uni-variate marginal densities
estimated from the uni-variate samples of
W(t) and W'(t), respectively.

b) Use the bi-variate Plackett model with both
uni-variate marginals log-normal for the
joint density of (W(t), W(t+∆t)), and by
means of bi-variate linear transformation

W(t) = W(t); W'(t)=(W(t+∆t)-W(t))/∆t,

calculate the fWW'
c) Assume that the joint density WW

tttf ∆+, is a bi-
variate normal density, and, by means of
previous linear transformation, obtain the
density '

,
WW

ttf

7. Calculating the coefficients in (4.10) with the
help of (4.5), (4.13) and low-order Fourier
expansions for m and s.

8. Numerical solution of equation (4.10) for given
level X* that yields the return period T(X*).

Figure.4.1. Seasonal variability of ln h1/3 time series for the Baltic Sea.
(a) Seasonal mean value m(tα) and its 1st order Fourier representation (b) Seasonal standard deviation

s(tα) and its 3rd order Fourier representation. Axis of abscissa is annual time tα (6-hour intervals)
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