CHAPTER 3

Joint distribution of wave directions and heights

If a wave field is comprised of several wave patterns, then each of the patterns /wind sea or swell(s)/ can be described by a corresponding wave height *h*, period τ , for example $\overline{h}, \overline{\tau}$ and direction of propagation β .

The joint distribution density $f(h, \beta)$ is used most frequently for the probabilistic description of the wave field. An example of corresponding recurrence $f(h,\beta)dhd\beta$ (%) for the Baltic Sea (autumn) is given in Table 3.1 and is shown in Fig. 3.1.

The analysis of such joint distributions is specific because (h,β) represents a system of random values where h is a scalar value and β is an angular value. The coefficient of colligation C_f will be used to check the hypothesis that random values *h* and β are independent, as follows:

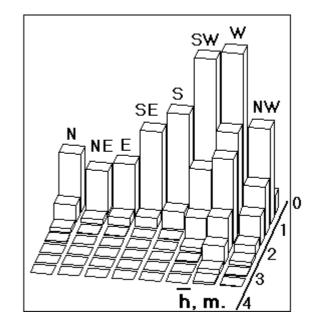


Figure 3.1. Probability of wave heights by direction The Baltic Sea

Table 3.1.

h, m	N	NE	Е	SE	S	SW	w	NW	f(h) dh
0.0-0.5	1	1	2	3	4	4	3	1	19
0.5-1.0	4	3	3	5	7	10	11	6	49
1.0-1.5	1	<1	1	1	1	4	6	3	18
1.5-2.0	<1	<1	<1	-	<1	1	5	2	9
2.0-2.5	<1	-	_	-	_	<1	2	1	3
2.5-3.0		-	Ι	-	Ι	<1	1	<1	1
>3.0	_	_	-	_	-	_	<1	<1	<1
f(β)dβ	6	4	6	9	12	20	29	14	100

$$C_f = \frac{f(h,\beta)}{f(h)f(\beta)}$$
(3.1)

Also we will use regression lines:

$$m_{h/b} = \int_{0}^{\infty} hf(h/\beta) dh \qquad (3.2)$$

$$m_{\beta/h} = \int_{0}^{2\pi} \beta f(\beta/h) d\beta \qquad (3.3)$$

and scedastic (conditional variance) curves:

$$D_{h/\beta} = \int_{0}^{0} (h - m_{h/\beta})^2 f(h/\beta) dh \quad , \tag{3.4}$$

$$D_{\beta/h} = \int_{0}^{2\pi} (\beta - m_{\beta/h})^2 f(\beta/h) d\beta$$
(3.5)

According to [Mardia, 1972] the regression is estimated as the mean direction

$$\overline{\beta} = \arctan\left[\overline{S}/\overline{C}\right] \tag{3.6}$$

while expression

$$D_{\beta} = l - R \tag{3.7}$$

with

$$\overline{C} = \frac{1}{n} \sum_{i=1}^{n} \cos \beta_i, \, \overline{S} = \frac{1}{n} \sum_{i=1}^{n} \sin \beta_i, \, R = \sqrt{\overline{C}^2 + \overline{S}^2}$$

gives an estimate for conditional variance (3.5). The value

- 14

$$\sigma = \sqrt{-2\ln(1 - D_{\beta})} \tag{3.8}$$

that follows from an analogy with a wrapped normal distribution can be used as a measure of spreading of angular value β . It is similar to the

r.m.s. deviation. Tables 3.2 and 3.3 are based on the data from Table 3.1, and present conditional means /see (3.2),(3.3)/ and variances /see (3.4),(3.5)/ for height of waves from different directions.

Conditional means (3.2), variance (3.4), and r.m.s. deviation of wave height h for given direction β

β	Ν	NE	Е	SE	S	SW	W	NW
<i>т_{һ\β}, т</i>	0.8	0.7	0.6	0.6	0.6	0.8	1.3	1.1
$D_{h \beta}, m^2$	0.1	0.1	0.1	0.1	0.1	0.2	0.5	0.4
$\sigma_{h B}, m$	0.4	0.3	0.3	0.3	0.3	0.5	0.7	0.6

Table 3.3.

Conditional means (3.3), variance (3.5), and r.m.s. deviation of wave direction β for given wave height h

h, m	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75
$m_{\beta h,0}$	189	239	264	273	276	275	275	275
$D_{\beta h}$, rad ² .	0.60	0.68	0.38	0.13	0.09	0.05	0.03	0.03
$\sigma_{\beta h}, \sigma_{\beta h}$	78	86	56	30	25	18	14	13

The computations show that values of c_f differ from 1, lines of regression (3.2) and (3.3) are not parallel to co-ordinates, conditional variance $D_{\beta|h}$ differs from the absolute variance D_{β} = 0.59 rad², σ_{β} = 76°. This suggests that the two-dimensional distribution density f(h,\beta) has to be approximated by expression

$$f(h,\beta) = f(h)f(\beta|h)$$
(3.9)

Among existing approximations of $f(\beta \mid h)$ the most useful is the Mises distribution. Its mean μ and scale *k* parameters depend on wave height *h*:

$$f(\beta|h) = \frac{1}{2\pi I_o(k(h))} exp[k(h)cos[\beta - \mu(h)]],$$

here $|\mu(h)| < \infty, \quad k(h) > 0.$ (3.10)

where

Here

$$I_0(k) = \sum_{r=0}^{\infty} \frac{1}{(r!)^2} \left[\frac{k}{2}\right]^{2r}$$
(3.11)

is the modified first type zero-order cylindrical function. Variation of parameters μ and *k* makes it possible to reconstruct all angular distributions, from uniform to a narrow one.

Comparisons of $f(h,\beta)$ and approximation (3.10) for parameters μ and *k* taken from Table 3.4 showed satisfactory agreement.

We can use the distribution $F(h|\beta)$ for any given β to estimate h_{max} with the help of both methods of initial distribution and the annual maximum series. The absolute wave height distribution is a mixed distribution of waves coming from different sectors of wave directions β_i :

$$f(h) = \sum_{i} \gamma_{i} f(h / \beta_{i}). \qquad (3.12)$$

Here γ_i are weight coefficients, which meet the compliance condition that $\sum_i \gamma_i = 1$. Computation

of extreme values for individual directions is then made by simple adjustment of omni-directional wave height distribution f(h) with distribution of wave height for given directions $f(h|\beta_i)$. Wave height h(T), expected to occur once in T years for direction β will be equal to a certain quantile of the omni-directional distribution f(h).

Table 3.5 provides estimates of a hundred year mean wave height, both directional and omnidirectional, based on data from Table 3.1.

Table 3.4.Parameters μ and k of conditional distribution of wave heights (3.10).Data from Table 3.1

h, m	0–0.5	0.5–1.0	1.0–1.5	1.5–2.0	2.0–2.5	2.5–3.0	3.0-4.0
μ, ⁰	189	239	264	273	276	275	275
k	0.8	0.7	1.8	4.2	6.5	7.2	7.8

Table 3.5Directional and omni-directional estimates of one hundred year wave height.AMS method. The Baltic Sea

β	Ν	NE	Е	SE	S	SW	w	NW	omni- directional
h(100), m	2.7	2.4	2.3	2.4	2.7	4.0	5.1	4.4	5.1

It is seen that the highest waves in the Baltic Sea mostly propagate from the west. If traditional computations of absolute and conditional distributions are used, a discrepancy often occurs that the omni-directional wave height estimate exceeds the maximum (over all directions) estimate computed taking into account directional distribution [Proceedings, 1986]. Estimates of long return period wave heights, if they are based on relation (3.12), eliminate this typical discrepancy.

---0000000----