WORLD METEOROLOGICAL ORGANIZATION

INTERGOVERNMENTAL OCEANOGRAPHIC COMMISSION (OF UNESCO)

JOINT WMO/IOC TECHNICAL COMMISSION FOR OCEANOGRAPHY AND MARINE METEOROLOGY (JCOMM) SHIP OBSERVATIONS TEAM (SOT)

SIXTH SESSION

HOBART, AUSTRALIA, 11-15 APRIL 2011

SOT-VI/Doc. 9.1.1 (15.03.2011)

ITEM: 9.1.1

ORIGINAL: ENGLISH

REGIONAL SPECIALIZED METEOROLOGICAL CENTRE (RSMC), EXETER, VOS MONITORING REPORT

(Submitted by Colin Parrett, RSMC Exeter)

Summary and purpose of the document

This document provides information on the VOS data quality monitoring conducted by the Regional Specialized Meteorological Centre (RSMC) operated by the United Kingdom Met Office in Exeter.

ACTION PROPOSED

The Team will review the information contained in this report, and comment and make decisions or recommendations as appropriate. See part A for the details of recommended actions.

Appendices: A. Met Office on-line monthly VOS suspect list for Jan 2011

- B. Criteria for monthly monitoring of marine surface observations
- C. Timeliness of VOS observations received at the Met Office, Jan 2011
- D. Met Office on-line time of receipt statistics for individual ships, Jan 2011
- E. Scheme for ranking VOS ships by quantity and quality of reports

- A - DRAFT TEXT FOR INCLUSION IN THE FINAL REPORT

9.1.1 - Regional Specialized Meteorological Centre (RSMC) Exeter VOS monitoring report

9.1.1.1 Ms Sarah North reported on the activities of the Regional Specialized Meteorological Centre (RSMC) Exeter, acting as CBS Lead Centre for monitoring the quality of surface marine observations. It routinely produces monthly and biannual quality reports as well as providing essential feedback to VOS operators regarding the quality of the data delivered by VOS ships.

9.1.1.2 The Met Office (RSMC Exeter) continues to compile lists of ships that have produced suspect observations each month, which are sent to the WMO Secretariat. They are also available via the Met Office web site¹. The Team agreed that the monitoring criteria are set at the correct levels as shown in Appendix B.

9.1.1.3 The Met Office also produces monthly lists of monitoring statistics for all VOS. To maintain up to date lists of ships, the Met Office advised that it was using the latest data downloaded from the online E-SURFMAR metadata database, as well as the latest WMO Pub47 data. In addition it uses the masked call sign data available from the JCOMMOPS FTP site².

9.1.1.4 It was noted that the SHIP masking scheme implemented by JMA in 2007 was still preventing the Met Office from monitoring data from individual Japanese and some US ships. Although the Met Office continues to collect data with real call-signs from JMA's FTP server, it is unable to route the data to its meteorological database due to problems with guaranteeing data security.

9.1.1.5 It was noted that the lists of VOS monitoring statistics available on the Met Office monitoring web-site had been modified during 2009 to replace masked call-signs with real call-signs for those ships with unique masked call-signs, and the ship names and country identifiers were also included (this was an action from SOT-5).

9.1.1.6 Timeliness information for VOS reports received at the Met Office is also made available from the observation monitoring web site³ in graphical format. This information showed that the majority of ship reports continue to be received promptly, with over 50% received within 15 minutes and 90% within 60 minutes of the observation time. Timeliness information for individual ships is also available from the website.

9.1.1.7 The Team noted that the Met Office had made its annual VOS ranking scheme results available on their website for all VOS (an action from SOT-5). The scheme ranks the VOS ships in terms of the timeliness, quantity and quality of their reports. This has been used to assess the annual performance of UK VOS and for determining which individual ships should be presented with awards. Details of the scheme are shown in Appendix E. VOS operators were invited to consider the value of the proposed performance ranking system and to advise the Met Office if they considered that the parameters used were appropriate (*action; VOS operators; end 2011*). VOS operators were also invited to consider performance rankings when issuing awards to their individual VOS fleets (*action; VOS operators; ongoing*).

9.1.1.8 The full report by the RSMC, Exeter, is provided in Annex VI.

^{1 :} http://research.metoffice.gov.uk/research/nwp/observations/monitoring/index.html

^{2 :} ftp://mask2real:vosmask@ftp.jcommops.org/mask2real.csv

^{3 :} http://research.metoffice.gov.uk/research/nwp/observations/monitoring/marine/TOR/index.html

- B - BACKGROUND INFORMATION

Monitoring the quality and timeliness of VOS observations

- 1 The Met Office (RSMC Exeter), as WMO-designated lead centre for monitoring the quality of surface marine meteorological data (observations from ships, buoys and other in situ marine platforms), compares observations from individual platforms with the Met Office's global model background 6-hour forecast fields for each variable. Platforms for which the observed values differ from the background by a significant amount are flagged as suspect.
- 2 Monthly lists of suspect platforms are sent to the WMO Secretariat and also exchanged among the 4 lead monitoring centres (Met Office, JMA, NCEP and ECMWF), and other centres, for comparison. Generally there is considerable agreement between the different centres, both in terms of suspect platforms and mean and standard deviation of differences from the background fields. The Met Office monthly suspect lists are available via the Met Office web site⁴. A recent example of our on-line VOS suspect list for January 2011 is shown in Appendix A. Monthly QC plots are also available from the website for each ship that is listed as suspect. (N.B. The link⁴ to the Met Office web site will be replaced during 2011 and the new URL will be circulated to users via the JCOMMOPS mailing lists it will probably be under http://www.metoffice.gov.uk/research/weather.)
- 3 Originally only mean sea level pressure was monitored, but wind speed, wind direction, sea surface temperature, air temperature and relative humidity have been added to the information being exchanged on a monthly basis. The current monthly monitoring criteria for the 6 variables are shown in Appendix B. The meeting is invited to confirm that the monitoring criteria continue to be set at the correct levels.
- 4 The Met Office also produces monthly lists of monitoring statistics for the VOS fleets recruited by certain countries. To maintain up to date lists of the VOS fleets for each country concerned, the Met Office uses WMO Pub 47 and the meta-data available from the E-SURFMAR web-site. However, to ensure that recently recruited VOS vessels are included, the Met Office also receives monthly fleet updates from a number of countries.
- 5 Masked call sign data available from the JCOMMOPS Mask vs Real database is also taken into account when preparing the lists of VOS monitoring statistics. The statistics available on the Met Office web site were modified during 2009 to replace masked call-signs with real call-signs for those ships with unique masked call-signs (the ship names and country identifiers were also included). This was an action from SOT-5.
- 6 National focal points are notified when the latest VOS monthly monitoring reports and suspect lists become available on the Met Office website by means of an email sent by the Met Office to the SOT, VOS and PMO mailing lists, which are maintained by JCOMMOPS. It is important therefore that focal points wishing to receive this monitoring information check that their JCOMMOPS mailing list information is kept up to date. However, the monthly monitoring statistics continue to be emailed directly to major VOS operating countries, and as mentioned in reports to previous SOT meetings, any other national focal points who may wish to receive directly emailed copies of the monthly monitoring lists or 'suspect' ship lists should advise the Met Office of their email address.
- 7 Every 6 months more detailed monitoring reports, for all platforms, are produced and made available to the WMO Secretariat via the Met Office web site. The statistics relating to suspect VOS operated by specific members are extracted from the report and distributed by the

^{4 :} http://research.metoffice.gov.uk/research/nwp/observations/monitoring/index.html

Secretariat to national focal points for the members concerned, under a covering letter requesting that remedial action be taken to correct the problems. The Team is invited to note that the Met Office intends to discontinue producing the individual time-series plots for each suspect platform, due to the time-consuming nature of this work and doubts as to the usefulness of these time-series for correcting problems, especially considering the monthly information available (mentioned above). The general overview and statistics are deemed to be more useful on this time-scale, and these will continue to be produced and be available from the Met Office web site.

- 8 Timeliness statistics for VOS reports received at the Met Office are available from our web site⁵ where monthly timeliness data for individual VOS is available as well as tables and graphs showing the relative timeliness of national VOS fleets. A graphical example for January 2011 data is shown in Appendix C, where it can be seen from the upper graph that the majority of ship reports were received promptly, with more than 50% received within 15 minutes and about 90% received within 60 minutes of the observation time. The timeliness has improved markedly in the past two years, probably due to increased automation. The cut-off time for operational NWP global data assimilation is typically 90-150 minutes after the analysis times of 00, 06, 12 and 18 UTC, so more than 90% of global VOS data should be received in time to be assimilated. An example of timeliness information for individual call-signs during January 2011 is shown in Appendix D.
- 9 Since SOT-5, the Met Office has started producing annual lists of all VOS ships, ranked in order of importance to the numerical weather prediction (NWP) system, and made them available from the Met Office web-site⁶. The ships are ranked in terms of their quantity, quality and timeliness of reports, largely to assist in presenting awards to the best performing ships (initially in the UK VOS fleet). The method and latest results for the UK fleet are shown in Appendix E.
- 10 As mentioned at SOT-5, the Met Office's role as CBS Lead Centre for monitoring marine data is incomplete, with Japanese ships not being monitored individually, due to JMA's adoption of the 'SHIP' masking scheme. The Met Office continues to collect the original data from JMA's FTP server, but this data is not routed into our meteorological database due to issues concerning its security. Consequently, to ensure that the VOS can continue to be monitored efficiently, the Met Office (RSMC Exeter) would prefer that all countries adopt a masking method with a unique masked identifier for each ship, until the new ENCODE masking scheme is rolled out.

^{5 :} http://research.metoffice.gov.uk/research/nwp/observations/monitoring/marine/TOR/index.html

^{6 :} http://research.metoffice.gov.uk/research/nwp/observations/monitoring/marine/VOSranking/index.html

APPENDIX A

MET OFFICE ON-LINE MONTHLY VOS SUSPECT LIST FOR JAN 2011

Pub47 VOS Suspects for Jan 2011

To view the suspect threshold for each variable and statistic, hover your cursor over the relevant column. Please note that the bias and standard deviation statistics listed below exclude observations having gross errors.

PRESSURE (hPa)													
CTR' CODI	SHIP NAME	CALL SIGN	TOTAL	GE (%)	BIAS	SD	Graph						
CA	GRIFFON	CGDS	541	42	-12.3	0.7	QC plot						
DE	JPO TUCANA	A8RW4	23	0	-4.6	2.9	QC plot						
DE	SANTA CLARA	DAJT	74	0	-4.8	0.8	QC plot						
EU	CELTIC VOYAGER (AWS)	BATEU03	46	43	11.5	2.1	QC plot						
GB	CSCL Long Beach	VRCZ7	32	0	5.9	1.2	QC plot						
GB	Eridge	ZCBH7	35	0	9.1	1.5	QC plot						
RU	BORIS SYROMYATNIKOV	UCUF	51	35	2.4	7.0	<u>QC plot</u>						
RU	ELENA SHATROVA	UITR	28	0	-6.0	2.3	<u>QC plot</u>						
RU	OLEG NAIDENOV	UCUC	34	0	-5.1	1.9	QC plot						
US	CARNIVAL SENSATION	C6FM8	25	0	-5.4	2.3	QC plot						
US	HOOD ISLAND	C6LU4	63	0	-4.9	1.6	QC plot						
US	INDIANA HARBOR	WXN3191	28	36	-8.8	4.9	<u>QC plot</u>						
	Т	EMPERAT	URE (de	eg C)									
CTR	SHIP NAME	CALL	TOTAL	GE (%)	BIAS	SD	Graph						
COD		SIGN											
AU	NORTHWEST SANDERLING	VNVZ	24	42	0.0	0.9	OC plot						
AU CA	NORTHWEST SANDERLING	VNVZ VCLM	24 70	42 0	0.0 4.6	0.9 1.4	<u>QC plot</u> OC plot						
AU CA NO	NORTHWEST SANDERLING ARCTIC FF JAN MAYEN	VNVZ VCLM LAHV	24 70 70	42 0 0	0.0 4.6 4.5	0.9 1.4 4.2	QC plot QC plot QC plot						
AU CA NO RU	NORTHWEST SANDERLING ARCTIC FF JAN MAYEN BORIS SYROMYATNIKOV	VNVZ VCLM LAHV UCUF	24 70 70 51	42 0 0 0	0.0 4.6 4.5 -5.9	0.9 1.4 4.2 4.4	QC plot QC plot QC plot QC plot						
AU CA NO RU US	NORTHWEST SANDERLING ARCTIC FF JAN MAYEN BORIS SYROMYATNIKOV AURORA	VNVZ VCLM LAHV UCUF WYM9567	24 70 70 51 154	42 0 0 0	0.0 4.6 4.5 -5.9 5.4	0.9 1.4 4.2 4.4 2.6	QC plot QC plot QC plot QC plot QC plot						
AU CA NO RU US US	NORTHWEST SANDERLING ARCTIC FF JAN MAYEN BORIS SYROMYATNIKOV AURORA INDIANA HARBOR	VNVZ VCLM LAHV UCUF WYM9567 WXN3191	24 70 70 51 154 28	42 0 0 0 0 11	0.0 4.6 4.5 -5.9 5.4 -9.7	0.9 1.4 4.2 4.4 2.6 5.0	QC plot QC plot QC plot QC plot QC plot QC plot						
AU CA NO RU US US US	NORTHWEST SANDERLING ARCTIC FF JAN MAYEN BORIS SYROMYATNIKOV AURORA INDIANA HARBOR KOTA JAYA	VNVZ VCLM LAHV UCUF WYM9567 WXN3191 VRWM2	24 70 70 51 154 28 22	42 0 0 0 11 0	0.0 4.6 4.5 -5.9 5.4 -9.7 4.7	0.9 1.4 4.2 4.4 2.6 5.0 5.5	QC plot QC plot QC plot QC plot QC plot QC plot QC plot						
AU CA NO RU US US US US	NORTHWEST SANDERLING ARCTIC FF JAN MAYEN BORIS SYROMYATNIKOV AURORA INDIANA HARBOR KOTA JAYA VALDEZ STAR	VIVZ VCLM LAHV UCUF WYM9567 WXN3191 VRWM2 WC07674	24 70 70 51 154 28 22 71	42 0 0 0 11 0 7	0.0 4.6 4.5 -5.9 5.4 -9.7 4.7 7.7	0.9 1.4 4.2 4.4 2.6 5.0 5.5 2.9	QC plot QC plot QC plot QC plot QC plot QC plot QC plot QC plot						
AU CA NO RU US US US US	NORTHWEST SANDERLING ARCTIC FF JAN MAYEN BORIS SYROMYATNIKOV AURORA INDIANA HARBOR KOTA JAYA VALDEZ STAR	VNVZ VCLM LAHV UCUF WYM9567 WXN3191 VRWM2 WCO7674 WIND SPE	24 70 51 154 28 22 71 ED (m s	42 0 0 0 11 0 7 5-1)	0.0 4.6 4.5 -5.9 5.4 -9.7 4.7 7.7	0.9 1.4 4.2 4.4 2.6 5.0 5.5 2.9	QC plot QC plot QC plot QC plot QC plot QC plot QC plot QC plot						
AU CA NO RU US US US US	NORTHWEST SANDERLING ARCTIC FF JAN MAYEN BORIS SYROMYATNIKOV AURORA INDIANA HARBOR KOTA JAYA VALDEZ STAR SHIP NAME	SIGN VNVZ VCLM LAHV UCUF WYM9567 WXN3191 VRWM2 WC07674 WIND SPE CALL SIGN	24 70 51 154 28 22 71 ED (m s	42 0 0 11 0 7 5-1) GE (%)	0.0 4.6 4.5 -5.9 5.4 -9.7 4.7 7.7 BIAS	0.9 1.4 4.2 4.4 2.6 5.0 5.5 2.9 SD	QC plot QC plot QC plot QC plot QC plot QC plot QC plot						
AU CA NO RU US US US US CTR CODE GB	NORTHWEST SANDERLING ARCTIC FF JAN MAYEN BORIS SYROMYATNIKOV AURORA INDIANA HARBOR KOTA JAYA VALDEZ STAR SHIP NAME Chiguita Deutschland	VNVZ VCLM LAHV UCUF WYM9567 WXN3191 VRWM2 WCO7674 WIND SPE CALL SIGN C6KD8	24 70 51 154 28 22 71 ED (m s TOTAL 34	42 0 0 0 11 0 7 5-1) GE (%)	0.0 4.6 4.5 5.9 5.4 9.7 4.7 7.7 BIAS 6.8	0.9 1.4 4.2 4.4 2.6 5.0 5.5 2.9 SD 2.3	QC plot QC plot QC plot QC plot QC plot QC plot QC plot QC plot						
AU CA NO RU US US US US CTR CODE GB	NORTHWEST SANDERLING ARCTIC FF JAN MAYEN BORIS SYROMYATNIKOV AURORA INDIANA HARBOR KOTA JAYA VALDEZ STAR SHIP NAME Chiquita Deutschland APOLLOGRACHT	VIVZ VCLM LAHV UCUF WYM9567 WXN3191 VRWM2 WCO7674 WIND SPE CALL SIGN C6KD8 PCSV	24 70 51 154 22 71 ED (m s TOTAL 34	42 0 0 0 11 0 7 5-1) GE (%) 0 34	0.0 4.6 4.5 5.9 5.4 9.7 4.7 7.7 BIAS 6.8 0.4	0.9 1.4 4.2 4.4 2.6 5.0 5.5 2.9 SD 2.3 2.3 2.3	QC plot QC plot QC plot QC plot QC plot QC plot QC plot QC plot						
AU CA RU US US US US CTR CODE GB NL US	NORTHWEST SANDERLING ARCTIC FF JAN MAYEN BORIS SYROMYATNIKOV AURORA INDIANA HARBOR KOTA JAYA VALDEZ STAR SHIP NAME Chiquita Deutschland APOLLOGRACHT BERLIAN EKUATOR	VIVZ VCLM LAHV UCUF WYM9567 WXN3191 VRWM2 WCO7674 WIND SPE CALL SIGN C6KD8 PCSV HPYK	24 70 51 154 28 22 71 ED (m s TOTAL 34 44 28	42 0 0 11 0 7 5-1) GE (%) 0 34 71	0.0 4.6 4.5 -5.9 5.4 9.7 4.7 7.7 BIAS 6.8 0.4 5.1	0.9 1.4 4.2 4.4 2.6 5.5 5.5 2.9 SD 2.3 2.3 2.3 2.3 5.4	QC plot QC plot QC plot QC plot QC plot QC plot QC plot QC plot QC plot						
AU CA NO RU US US US US CODE GB NL US US	NORTHWEST SANDERLING ARCTIC FF JAN MAYEN BORIS SYROMYATNIKOV AURORA INDIANA HARBOR KOTA JAYA VALDEZ STAR SHIP NAME Chiquita Deutschland APOLLOGRACHT BERLIAN EKUATOR INDIANA HARBOR	VIVZ VCLM LAHV UCUF WYM9567 WXN3191 VRWM2 WCO7674 WIND SPE CALL SIGN C6KD8 PCSV HPYK WXN3191	24 70 51 154 28 22 71 ED (m s TOTAL 34 44 28 28	42 0 0 111 5-1) GE (%) 0 34 71 0	0.0 4.6 4.5 -5.9 5.4 9.5.4 7.7 7.7 8 BIAS 6.8 0.4 5.1 -7.0	0.9 1.4 4.2 4.4 2.6 5.5 5.5 2.9 SD 2.3 2.3 2.3 2.3 4.4	QC plot QC plot						

Observation Processing
Observation Types
Quality Control
Observation Monitoring
Maur

Contact us

🖉 Links

WIND DIRECTION (deg)														
CALL SIGN	TOTAL	GE (%)	BIAS	SD										
V2BF1	21	5	-49.3	78.1										
2AKI2	21	0	31.8	59.0										
C6KD8	31	0	-38.0	97.7										
ZCDY2	215	2	24.6	105.0										
C6JD7	33	0	13.9	86.3										
PCSV	35	43	50.1	118.5										
	WIND DIRE CALL SIGN V2BF1 2AKI2 C6KD8 ZCDY2 C6JD7 PCSV	CALL SIGN TOTAL V2BF1 21 2AKI2 21 C6KD8 31 ZCDY2 215 C6JD7 33 PCSV 35	WIND DIRECTION (deg) CALL SIGN TOTAL GE (%) V2BF1 21 5 2AKI2 21 0 C6KD8 31 0 ZCDY2 215 2 C6JD7 33 0 PCSV 35 43	WIND DIRECTION (deg) CALL SIGN TOTAL GE (%) BIAS V2BF1 21 5 49.3 2AKI2 21 0 31.8 C6KD8 31 0 -38.0 ZCDY2 215 2 24.6 C6JD7 33 0 13.9 PCSV 35 43 50.1										

DDBR2

V2BE4

NWS0028

67

37

23

0

-6.0

-32.4

0

0 -14.7

1.6

52.7

93.4

QC plot

Graph <u>QC plot</u>

US

CTR Codi Au

GB

GB

GB

GB

NL

NL

NZ

OCEANUS (AWS)

POLAR STREAM

AND BARB

TASMAN CHALLENGER (ANTIGUA

APPENDIX B

CRITERIA FOR MONTHLY MONITORING OF MARINE SURFACE OBSERVATIONS

Monitoring procedures

Period	:One calendar month.														
Data monitored	Reports from each unique identifier for ships,														
	fixed bu	loys and pla	atforms.												
Standard of comparison	:Backgrou	and field f	rom Exeter g	global model.											
Observation times	:All hour	s	_												
Elements monitored	:Mean sea	a level pres	ssure (hPa).												
	:Wind spe	ed (ms^{-1}) .	, , , , , , , , , , , , , , , , , , ,												
	Wind dir	rection (de	arees).												
	:Air temperature (°C)														
	Relative Humidity (%)														
	:Sea surf	ace temper:	ature (°C)												
Parameters monitored	·bcu buri	uce compert													
NORG	:Number of observations received, excluding duplicates														
NOB5 PCF	·Dercentac	observation	vationa with	aross errors											
90E 9DFT	·Percentag	je of obser	vations with	rand ovaluding											
%REU	+bogo wi	th groad of	vacions liag	ged, excluding											
CD.	Ctandard	dorrigtions e	ct difference	a of observations from											
50	·Stanuaru	ueviation (te of observations from											
	background values, excluding those with gross														
BIAS	BIAS :Mean difference of observations from														
	backgrou	background values, excluding those with gross errors													
	(N.B. a positive bias indicates the wind														
	observation is veered to the background)														
RMS	Root Mean Square difference of observations from														
	background values, excluding those with gross errors.														
CDACC EDDAD I IMIT	·1E bDa	(magaza)													
GROSS ERROR LIMII	•15 MPa	(pressu	re)												
	$\cdot 25$ IIIS	(vector	wind)												
	:15 °C	(air te	emperature)												
	·50%	(relati	ve numiaity,)											
	:10 °C	(sea sur	face temper	ature)											
CELECTION COLTEDIA	NODE -	20 and o	no or moro	of the following:											
SELECTION CRITERIA	·1082 >=	20 , and 0		fi the fortowing.											
	1 Bias	>=	4 hPa	(pressure)											
	1.DIGD	>-	5 mg ⁻¹	(wind speed)											
		>-	30 degrees	(direction)											
		>=	1°C	(air tomporature)											
		>=	159	(rolativo humidity)											
		>-	2 °C												
	2 00	>-													
	2.50	>-	0 IIPa	(dimention)											
		>=	ou degrees												
		>= 6 °C (air tempe													
	2 509	>=	5 0	(551)											
	3.PGE	>=	25												

N.B. Observations of wind direction are only included in the wind direction statistics if the observed or background wind speed is greater than 5 $\rm ms^{-1}$

APPENDIX C

TIMELINESS OF VOS OBSERVATIONS RECEIVED AT THE MET OFFICE, JAN 2011

APPENDIX D

MET OFFICE ON-LINE TIME OF RECEIPT STATISTICS FOR INDIVIDUAL SHIPS, JAN 2011

Pub47 Time of Receipt Statistics by SHIP for January

CTR	YCALLSIGN	NAME	Observations	N<30	N<60	N<120	N⊳360	Average (R-O) (mins)
	TBWAA05		45	39	41	42	1	34.3
	TBWAA07		33	32	32	33	0	13.0
	TBWAA09		2	2	2	2	0	19.5
	TBWAA18		21	16	21	21	0	19.2
	TBWAA19		48	39	41	43	1	43.2
NL	PCAM	AALSMEERGRACHT	7	6	6	7	0	18.1
NL	PCCL	ACHTERGRACHT	36	36	36	36	0	18.2
NL	PCDE	ADMIRALENGRACHT	26	24	25	26	0	15.2
NL	PHMH	AFRICABORG	19	17	17	17	0	29.4
NL	PJKV	AGULHAS STREAM	1	0	0	0	1	1142.0
NL	PCKU	ALEXANDERGRACHT	40	36	38	39	0	18.5
NL	PHIN	AMAZONEBORG	65	63	65	65	0	12.6
NL	РНКТ	AMERICABORG	20	15	19	20	0	19.2
NL	PCPR	AMSTELGRACHT	51	48	51	51	0	13.0
NL	PCGQ	ANJELIERSGRACHT	39	28	36	37	0	29.5
NL	PCQL	ANKERGRACHT	50	38	47	49	1	40.8
NL	PJJI	ANTILLA	4	4	4	4	0	1.8
NL	PCSV	APOLLOGRACHT	47	47	47	47	0	10.8
NL	PCTG	ARCHANGELGRACHT	35	31	35	35	0	14.8
NL	PHHD	ARNEBORG	9	8	8	8	1	66.2
NL	PCUI	ARTISGRACHT	53	44	49	49	0	30.1
NL	PHIW	ASIABORG	37	25	37	37	0	19.7
NL	C6KE3	ASIATIC	17	15	17	17	0	15.7
NL	PHNG	ATLANTICBORG	33	18	30	31	0	39.7
NL	PCVX	ATLASGRACHT	45	42	42	43	2	43.5
NL	PFPT	AVATAQ	37	28	31	32	3	79.0
NL	PENR	BENGUELA STREAM	117	114	117	117	0	13.4
NL	LAIK5	Berge Pacific	17	7	13	15	0	52.1
NL	LATO2	BERGE STAHL	33	28	32	32	1	41.4
NL	A8JH8	BUZZARD BAY	51	46	50	50	0	20.4
NL	PJRH	COLD STREAM	60	59	59	59	0	13.3
NL	A8IP4	COMOROS STREAM	41	32	39	40	0	24.5
NL	РНКМ	CORAL FAVIA	33	31	33	33	0	16.5
NL	PDIB	CORAL MEANDRA	40	28	35	38	1	87.5
NL	ELWC5	CORAL PALMATA	52	37	50	52	0	26.1
NL	ELXG9	CORAL PAVONA	32	32	32	32	0	12.0
NL	PCFT	CORAL RIGIDA	46	41	45	45	0	22.1
NL	PBOF	Damgracht	27	23	23	24	1	42.1
NL	PDNN	DANIELLA	7	7	7	7	0	12.0
NL	PBLQ	Diamantgracht	35	12	29	34	0	50.6
NL	PBSZ	Dolfijngracht	11	8	9	9	2	140.9

Links Observation Processing Observation Types Quality Control Observation Monitoring News News releases Contact Contact us

APPENDIX E

SCHEME FOR RANKING VOS SHIPS BY QUANTITY AND QUALITY OF REPORTS

Ranking Method

Statistics for each ship are accumulated for the year and these are used to rank the ships in terms of number of reports received, quality of the data and timeliness of the reports throughout the year.

The variables considered are:

- Pressure (P)
- Wind speed (Spd)
- Wind direction (Dir)
- Temperature (T)
- Relative humidity (RH)
- Visibility (Vis)
- Sea Surface Temperature (SST)

- these are the variables reported by SHIPs that are assimilated operationally at the Met Office.

Number of reports score

The set of numbers of reports received (Nobs) is 'capped' to limit the influence of any very high numbers from automatic stations, then a score is calculated for the number of observations (obs) received:

Firstly the values in Nobs are inversed to give low (good) scores to ships with high numbers of obs and vice-versa, **Nobs = MAX(Nobs) - Nobs**

Secondly, so that ships with below average numbers have scores greater than 1.0, and vice-versa, we set **NumObsScore = Nobs / MEAN(Nobs)**

Quality score

Quality scores for each variable are calculated, based on the following observation-minusbackground (O-B) statistics:

MeanScore = (Absolute value of mean O-B) / VariableLimit

SDScore = (Standard Deviation of O-B) / VariableLimit

[where the following VariableLimit values are used, based on the Met Office reject list thresholds: P = 2.0 hPa, Spd = 3.0 m/s, Dir = 40 degrees, T = 3.0 C, RH = 15.0 %, Log(Vis) = 1.0, SST = 3.0 C] and GEScore = (Number of Gross Errors) / (Mean number of Gross Errors)

(N.B. For ships with 100% gross errors, the Mean and SD scores are set to the worst in the set.) All scores are capped at 2.0, then a "quality-score" is created for each variable:

QualityScore = (MeanScore + SDScore + GEScore) / 3

Time of receipt score

Time of receipt (ToR) scores are produced from yearly totals for the following ToR categories: reports received within 30 minutes of the report time, 30-60 minutes, 60-120 minutes, 120-360 minutes and after 360 minutes.

Each ship is given a score that is the sum of the following numbers of points for each category multiplied by the number of observations in that category:

points_30 = 0.0, points_60 = 30.0, points_120 = 75.0, points_360 = 225.0, points_after = 345.0 (These scores are just the values of the mid points of the ranges minus the mid-point of the first range (15 minutes) to make the best score zero; and 'points_after' has just been set to 360 minus 15 as the range is unbounded.)

The ToR scores are then divided by the scores the ships would have received had all of their

observations been received between 60 and 120 minutes, i.e. we are suggesting that observations should really have been received within two hours and that reports received later than that are less useful to NWP. The ToR scores are also capped at 2.0.

Combined score

The **NumObs, Quality and ToR** scores are combined with weights of **0.4, 0.4 and 0.2**, respectively, for each variable.

For ships that do not report certain variables the scores are set to the worst score for that variable (usually 2.0).

Then the scores for each variable are combined using the following weightings:

P = 2.0, Spd = 1.0, Dir = 0.6, T = 1.0, RH = 0.6, Vis = 0.4, SST = 1.0.

These weightings are estimates of the relative importance of each variable to the NWP models (their values may need some further tuning).

<u>Weights</u>

N.B. The above ranking scheme is only intended to give an indication of the relative performance of individual observing ships and marine platforms. It is primarily aimed at usefulness for NWP and therefore only takes into account observations that have been received in near real time. It takes no account of delayed mode observations collected for climate studies (for which timeliness is largely irrelevant).

×	X	2.05																							ļ																									
	help - E	• 🐴 • 🐴 •		د م	00000	0.394	ime-of-receip	oR_Scort	0.457	0.173	0.396	0.154	0.079	0.163	0:050	0.102	0.372	0.032	0.052	0.090	0.034	0.193	0.004	0.100	0.271	0.236	0.164	0.171	0.195	0.074	0.235	0.328	0.043	0.270	0.158	0.176	0.255	0.177	0.166	0.161	0.092	0.167	0.190	0.133	0.195	0.136	0.149	0.100	0.008	
	uestion for			e c	21504	1090		mOb: V	4522	4288	3251	2078	1404	305	472	1412	1040	126	474	20 L	GG7	117	400	408	316	774	119	419	911	186	314	479	212	446	120	675	616	173	381	137	116	211	281	1113	489	185	PC7	417	46	2
l	Type a q	• *.0 .00		0	1.661	0.580	SST	S_Scort VIU	0.379	0.351	0.447	0.845	0.487	0.540	0.488	0.496	0.013	0.499	0.520	0.533	0.570	0.030	0.010	0.538	0.530	0.550	0.534	0.522	0.545	0.630	0.557	0.548	0.622	0.567	0.607	0.552	0.543	0.533	0.526	0.566	0.546	0.551	0.582	0.516	0.547	0.649	0.540	0.554	0.540	2
		%		• م	24002	260		mOb: 🗸 T	170	4262	2994	109	1536	234	493	1411	1044		467		341	007	0 0 1 1 1 1 1 1	4 C 4 0 2 0	280	925	184	414	899	230	447	437	7G1	461	272	693	704	209	375	175	118	202	285	1050	491	198	207	44/	47	:
				0	1 270	0.546	Visibility	1_Score Vu	0.709	0.159	0.079	0.601	0.083	0.738	0.285	0.045	9,010 0,010	0.434	0.307	0.470	0.354	0.420	0.52.0	0.402	0.434	0.151	0.470	0.362	0.148	0.431	0.352	0.373	0.410	0.356	0.447	0.265	0.309	0.465	0.381	0.482	0.551	0.452	0.435	0.070	0.342	0.494	0.429	0.475	0.623	242.0
		Z Ū ≣		z	0 78773	583	miditv	umOb: 🗸 🗸	3842	4335	2990	3691	1560	257	515	1410	1040	285	469	142	340	117	100	306	070	926	177	415	902	227	445	404	241	482	272	700	707	207	385	175	118	201	286	1032	493	193	007	444	47	:
		8 ·		W	1 204	0.600	Relative Hui	H_Scor V	0.537	0.351	0.468	0.418	0.460	0.559	0.579	0.503	0.432	0.510	0.527	979.0	0.545	0,620	0.560	0.003	0.558	0.524	0.551	0.536	0.539	0.531	0.551	0.561	0.540	0.571	0.549	0.542	0.549	0.561	0.577	0.536	0.556	0.554	0.585	0.535	0.555	0.556	0.030	0.507	0.531	
		•			20173	1201	ture	ImOb:	6157	4335	3016	3974	1561	276	515	1412	C+0 -	285	470	142	340	007	404	404	788	927	184	416	902	227	448	437	152	484	272	700	708	211	385	175	118	203	286	1033	493	198	007	448	47	
		Arial		X	1 602	0.593	Temperat	Score VI	0.289	0.483	0.438	0.386	0.455	0.544	0.499	0.554	80C'0	0.512	0.499	779.0	0.494	050.0	0.542	0.520	0.557	0.529	0.544	0.520	0.554	0.527	0.540	0.551	0.645	0.558	0.566	0.565	0.535	0.534	0.570	0.549	0.524	0.552	0.548	0.525	0.549	0.523	0.530	0/0/0	0.552	4222
		•		- -	0002	615	ion	mOb: 🗸 T	3153	1411	1624	2210	1022	178	304	679	0/01	17	288	8 0 5	198	200	240	173	2 6	651	106	303	534	155	288	325	6, 15	305	120	391	482	136	286	97	72	105	178	630	352	111	200	118	0	5
		100% •			1.660	0.614	Wind Direct	R_Scor + Nu	0.305	0.478	0.475	0.370	0.621	0.670	0.531	0.574	470.0	0.551	0.566	0.295	0.533	0520	0,620	0.601	0.550	0.530	0.555	0.557	0.557	0.545	0.581	0.556	0.616.U	0.613	0.577	0.534	0.618	0.566	0.623	0.582	0.565	0.585	0.568	0.571	0.548	0.616	0.00Z	170.0	0.578	2.22
				T	0 20470	1189	2	mOb: V D	4833	4330	3016	3854	1564	276	517	1413	1044	286	470		340	713	46.4	404	1880	927	184	417	904	229	448	437	242	485	271	701	713	209	387	175	117	203	286	1080	493	198	007	440	47	-
		Σ • <u>Σ</u> ↓		0 0	1.679	0.661	Wind Spee	P_Scor VI	0.397	0.514	0.591	0.416	0.780	0.664	0.546	0.680	0.037	0.620	0.633	590.U	0.557	770.0	0.003	0.687	0.514	0.709	0.581	0.611	0.679	0.644	0.625	0.639	0.504	0.650	0.573	0.726	0.679	0.658	0.634	0.608	0.617	0.643	0.662	0.711	0.667	0.626	0.030	0.000	0.604	
	v Heb	2		с ц.	37006	1138	e	mOb: V S	5434	4313	3016	3964	1563	4631	517	1413	1041	285	470	14.0	341	1007	404	104	280	927	184	417	904	230	448	437	201	485	272	701	708	212	386	175	118	203	279	1049	493	198	007	440	47	-
	<u>D</u> ata <u>W</u> indov	9 8		ш	1.662	0.642	Pressul	Score VI	0.340	0.355	0.477	0.365	0.464	0.284	0.526	0.522	780.0	0.521	0.545	0.528	0.575	700.0	0.624	0.576	0.553	0.590	0.580	0.611	0.591	0.531	0.578	0.569	0.650 0	0.552	0.569	0.571	0.581	0.577	0.569	0.582	0.585	0.575	0.561	0.674	0.618	0.549	780.0	100/0 0 560	0.598	
	Iools	6 			016200	6076	vrbis	mOb: V	28111	27274	19907	19880	10210	6157	3333	8100	11140	1719	3108	924	2155	0701	0000	20.66	1040	6057	1138	2801	5956	1484	2838	2956	9/4 2080	3148	1599	4561	4638	1357	2585	1109	777	1328	1881	6987	3304	1281	1773	1146	289	ng_method
ş	nsert F <u>o</u> rmat		f 281	ں د	0.000	0.679	ombined All	icore 🗸 Nu	0.384	0.397	0.458	0.468	0.505	0.507	0.510	0.524	07010	0.528	0.533	0.536	0.536	0.240	0.660	0.662	0.552	0.554	0.556	0.557	0.557	0.558	0.560	0.560	70C.U	0.565	0.566	0.566	0.567	0.567	0.567	0.568	0.568	0.569	0.572	0.574	0.575	0.575	0/0/0	0/0/0	0.577	2010 Scori
t Excel - Score	Edit <u>V</u> iew <u>I</u>		•		Mac.	Average:		ShipID V S	BATEU06	ZCDF4	ZCDY2	BATEU01	ZCD68	IDDUK02	C6KD6	Z0D50	200F0	C6Q13	C6KD5	CBNI8	C6KD9	ZAKI3 Cel/D7	CONDI	MGGMS		ZCDM6	MGRH9	ZQCP3	ZCDV2	C6JE2	MZFR9	Z0TP2	UUU52	OVSB2	MQPF2	ZCDF8	C6JD7	ZIPR7	A8DH2	C60A3	C60T4	VQH07	MCCNB	ZCDA9	ZCBU5	MHNL6	ZAKIZ ViOIDO	VUIDS	VOIVB	AnnualStats
Microsof	1 1 1 1 1 1		P442	∢	- c	n ا	4	5 Cmtry	230 GB	241 GB	320 GB	325 GB	89 88	89 333 333	400 GB	428 GH		442 GH	453 GB	401 GH	402 GH					543 GB	556 GB	<mark>560</mark> GB	<mark>561</mark> GB	570 GB	582 GB			89 89 89	643 GB	644 GB	654 GB	655 GB	828 68	89 090	<mark>661</mark> GB	<mark>667</mark> GB	691 GB	/U4 GB	711 GB	/12 GB			733 GH	

Annual VOS ranking scheme – results for UK ships for 2010