Land Surface Temperature Records - are we keeping our side of the bargain?

Peter Thorne, CICS-NC, NCSU and NOAA's NCDC, Asheville, NC, USA

With thanks to and on behalf of the International Surface Temperature Initiative steering committee.

www.surfacetemperatures.org

Talk outline

- Surface Temperature Initiative 101
- Backstory
- Exeter workshop outcomes and progress in key areas
 - Databank
 - Dataset creation
 - Benchmarking of performance (expanded upon in next talk)
 - Data and product serving
- Remaining challenges

NC State University

Personal thoughts on how to ensure SST and LST can be used seamlessly

Surface Temperature Initiative 101

- In some aspects this is us terrestrial folks playing catch up.
- Only, strictly speaking, two independent and truly global land surface temperature products
- Data availability is limited and fragmented.
 Proprietary issues.
- Metadata poor is charitable
- Few user tools
- Worse degree of coordination (no MARCDAT and other marine community equivalents)

The big question

- Can we create a process that creates a suite of verified estimates of land surface temperatures that can be used to answer scientific and societal demands of the 21st Century?
 - Open and transparent
 - Better understanding of fundamental instrument performance
 - Consistent performance evaluation
 - User tools
 - Not just monthly at the largest scales. Daily, sub-daily, regional and local

Backstory

- Discussions within Hadley Centre for several years recognizing the disparity between ongoing marine efforts and relative stagnation of land efforts.
 - Pushback
- Climategate came along ...
 - Sharpens minds, opens doors that were closed
 - Stress that fundamentally the initiative is NOT a response to this.
- UK submission to WMO CCI
- Exeter workshop to instigate process

Exeter workshop

- 80 experts including climate scientists, metrologists, statisticians, software engineers.
- International
- Strong marine community involvement recognizing the large amount we can learn from marine efforts and importance of coordination.
- White papers solicited in advance and open for comment on a moderated blog

Agreed outcomes and progress

Databank progress

- Largely looking to build on the ICOADS experience (and with ICOADS expert advice)
- Task teams set up
 - Provenance and version control
 - Data rescue
- Initial database starting to come together
 - Hosted at www.gosic.org
 - First version planned for April 2012

Databank challenges

- Numerous digital, image and hardcopy sources
 - Several sources for same station
 - Not always in agreement
 - Different formats
 - Different languages
 - No comprehensive knowledge of what data exists
 - Very poor metadata
- Pull through and collation
- Proprietary issues

Stage 0 - Data in hard / image copy

- 2000+ boxes of data in the NCDC library
- Holdings in other libraries and repositories, particularly former colonial powers
- Holdings literally rotting away or seen as a nuisance in many countries
- Holdings of data not taken by NMSs

Imaged data

	Termometro libre.	Máx. y min.	Llu	via.			Nu	bes.				v	ientos.						R	aróme	otro	A DE			V		
	Termonie		rince	Bavia ros.	A las 7 c	le la m.	A las 2	de la t.	A las g	de la n.	A 7	m.	A 2 t.	Ag	n,	Altur	a observa	da.	Terme			Altur	a reducid	da à o²		crometr	
	7 m. 7 m. 31. 9 n. Premedia	Maxima Minima Occibacio	Hora del p	Altura de la j	Cantidad. Especie.	Velocidad. Direction.	Cantidad. Especie.	Velocidad Direccion.	Cantidad.	Velocidad, Direccion,	Direction.	Fuerra,	Dirección.	Direccion.	Fuerza.	7 m.	21.	.n 6	711.	21. 9 m.				o n.	-		NOTAS.
7 8 9 10 11 12	1 W. 177 15 5 15 1 2 2 12 4 12 15 16 16 3 17 3 18 6 4 2 10 3 2 2 4 8 5 17 2 3 1 2 3 1 2 5 17 18 2 3 1 5 5 1 7 2	9 8.1 11.8																									Sa Muria del II. crya dire vion lifue de Maiste, fue acompaña da de fer fos descarglas sectre eds. La altura del termondro sotro el suelo, es de
15 9 16 8 17 2 18 6. 19 6 4 20 4 9 21 4 6	2.1824413.91 18 2.318282413.38 2 18888342 11.50 6121123116.29.92 646313612911.217.6. 186818911.217.6. 188818.717.4. 188822.9. 1236. 14.9.6.9.244.24.	99.1 612.9 615.3 512.5 11. 512.5 113.49.65	3,	700																							19 Meladu 18 19 Meladu 21 Melada
24 3.21 25 3.67 26 5.77 27 4.97	128.11.9 10. 7 17.6 3. 22.11.7 10.8 17.8 3.4 29.14 12.6 18.8 5.1 23.122.11. 1 17.9 4.4 3.12.3 11. 6 14.4 8.2	14.6															•										24 Helada
30 6. 17:	11.012.71638. 21.411.613.85.A 25. 13.1 19.1 5.9 200284: 411. 15182.	12.2	5, %											1													

ition	se Lao.	Na	lay Mois de Fer								ÉTAT DU CIEL					PRESSION BAROMÉTRIQUE						VENT	OUETTES	-	MILLINETI	RES ET DIXIE	HES NOT		
	TEMPÉRATURES	TEMPÉRATURE ET HUMIDITÉ												10 heures du matin			4 heures du soir			10 heures du	matin	4 heures du	soir	matin	diten	Pur J	1		
	TEMPERATURES		11	heures du	matin			4 heares	du soir	1 9	matin	1 soir			DATES		are	zéro		ure	, zéro	110		you	33	res du	res du	DE LAS	
ITES	TI		TREENONETRES OBJECT			THERMONETRES 551.		10 heures du 4 heures du					Lecture	Températi	orrigé et à	Lecture	Températ	Corrige et	Birecti	Force	Direct	Force	10 hea	4 hea	TOTAL				
	Minima	Моуеп	Sec	Monillé	Hilléreno	Etat hygr	Sec	Nouil	Differe	État hygu	0 -						2				Calme	0	J. E	2				15	
					-		1000				4		2		1	757. "			757.	-		3. E.	3	E. S. E	4				15
	15.8 30.0 22	1			-	-		-			10		10		2	7560			767.			3.5.	3	5. S. E	2				15
1	10.0 12.5 11.	7			-	-			-	1	10		10		3	76.6.0			7681			S. W.	2	Calus	-0-	-		PERSONAL PROPERTY.	1.11
2	9.6 14.11.12				-	-	-				10		10	1990	4	7.6.6. 5	1		765.			B. N. E	2	E.N.E.		-	traced -	District Co.	2.15.
3	9.6 16.0 12				-		-				16	7	8		3	768.5			765.			N.E	1	E.N.E.	12	7.0	-	THE RESERVE OF	
4	9.6 16.6 13	1			-	-					1	0	10		6	767.0			765.			N.E	1	N.N.E	1	1.2		3.8 0	1.20
5	10. 11 12.011	2			-	-	-				1	0	10		7	768. 0			767.			3.E	12	3. S. E.		2.8	1, 1		
6	9.2 16 - 1				-	-	-	-			1	0	10		8	767.0			766			S.E.	12	3.E	2	-	Traces	Staul 0	0.73
-	10. H 16.2 1.	3.3				-					1	0	10		9	76.8.0			761			1.5.8	1	S.E	3	1	"		0.20
8	11. 16.0 11	1.5		-	-	-						8	1		10	769. 5		1	767.6	-		5	1 3	J.E	1	1	H	THE STREET, S	0.19
10	11.2 21.6 16	6.4			-	-						6	2		11	767.		1	767			S.E.	3.	5.5.E	2	-	1 "	NUMBER OF THE OWNER, NAME OF	0.13
11	8.8 324 4	1.6		-		-						2	#		12	769.		-	1000			S.E	2	SE	2	1	1	ACCUPATION OF THE PERSON NAMED IN	2.13
12	11.4 85 1	8.2		-	-	-					1	0	3		13	768			768	,		S.E	13	J.E	2	-	1	THE RESIDENCE OF	0.11
13	7 24.8 1	19			-	-	-					4	1		14	767			768			SISE	1	5	1	1	1		0.13
14	7.6 28.6 3	16.1		-	-							1	8		15	1-765			764			Calm		3.8	12	1		loand	9000001
15	10.6 24.2 0	77		-	-							4	5		16	761.5			761			13	- 0	Calme		haus			a.13
16	10 22 1	16.									1	0	10		17	766.5			160			M.E			12			1.7	0.13
17	11.4 20.8			1	-						-	10	8		18	769			761			S.E	1	Calme		9.1		7.2	0.13
18	1	16.8		1200						-	-	10	4		19				763			5	1	AT.E.					1.15
19		41.7		1				-	-	-	-	10	10		20	120			763			E.M.		1					0.15
20		17.4		12			1000	-		-	-	81	6		. 21	1-151			764			F.M.		20		-			1015
21	14.6 24.6	901		3 30					-	-	-	10	- 8		22	7/2			762			TE F		THE RESERVE		6.7			0.18
37		17.5	602					-		-		10	10		23	761			769			N.I		J.E			-		0.12
23	17.5 27.5		4	434						-		8	-8		21	760			750			E.S.		J.E		0.5		0.6	0.09
21	104 616	24.4		1	-							10	8		95	1 111	5		75			E. S.	1 2	J.E		1.4		12	61 MOSCA
27	18.6 366	22.6			34	3						0	6		20	1/58			750			E.S.		Calin		4.3	-	4.3	0.01
21	186 166		1		1	-	-		-			10	6		500 BESSE	1250		-	75	0							-		
91 91	14.8 28	33.6		-	-	-									2 2														1

Data currently digitized

- Numerous public holdings
 - NCDC
 - UCAR
 - RIHMI
 - Regional and national holdings
- Some restricted for commercial reasons

Stage 1 - Native format digitized

Stage 2 - Common format

Getting data provider buy in

- Hearts and minds
 - Scientific value
 - WMO support?
 - Greater intrinsic value to data that is open
- Return value added products
 - Normals and extended normals
 - Averages
 - Threshold exceedances
 - Agricultural and energy indicies
 - Graphical summaries

Partnerships essential

- Bring together existing efforts, augment and ensure pull through.
 - ACRE
 - IEDRO
 - Numerous other national and international programs
- Pursue innovative approaches (crowdsourcing building upon success of oldweather.org etc.)
- Create a "land ICOADS" recognized as the repository and facilitate easy data submission
- Learn from ICOADS! ☺
- Recognize key partners and contributions

Multiple data products

- Structural uncertainty is the key (talks earlier in week ...)
- Need multiple independent efforts with different choices
 - Station selection
 - Time and space resolution
 - Quality control choices
 - Homogenization decisions
 - Averaging procedures

Benchmarking and assessment

- Next talk is on this in more detail
- Real world we do not have the luxury of knowing the truth so cannot ascertain fundamental performance – "All datasets are equal ..." or subjective selection which grates scientifically
- Consistent synthetic test cases potentially enable us to move to "... but some datasets are more equal than others are [for application X]"

Example

- For USHCN (lower 48 states)
- Simple benchmarks
- 100 member perturbed ensemble of the NCDC pairwise algorithm
- Consideration solely of regionally averaged timeseries and trends

Example for USHCN

Synthetic data with added nastiness

NC State University

Operational algorithm estimate

Synthetic data without nastiness

Of course ...

- Better if ...
 - analogs created by multi-member international team and kept blind from algorithm developers
 - Global
 - Consider more than skill at long-term trends
 - Create a science program around the analog creation and review that supports fundamental science development.

Serving products and aiding users

Open issues on data product provision

- Data formats
- Degree of user interaction
- Ability to create graphical and tabular output on the fly
- Limited progress to date
 - Largely a reflection that this data provision is some way down the road?
 - Ideas and suggestions welcome ...

Overall initiative progress to date

- Steering committee set up
 - Terms of reference
 - Seeking initiative sponsor bodies (WMO, BIPM, ISI)
- Working groups on databank and benchmarking active
 - Databank prototype made public and data sources coming in.
- Implementation Plan in advance stages of drafting
- Progress documented on initiative website at www.surfacetemperatures.org

Major remaining challenges

- Beyond the obvious issue of \$'s ...
- Databank is, like ICOADS, going to be a multidecade effort. Commercial considerations arguably make this harder.
- Gaining a multi-member ensemble of datasets is going to need funding and engaging multiple teams.
- Still need to resolve data serving aspects down the line

Personal thoughts on LST / SST

- People want to know changes and their uncertainties globally and regionally.
 - Need to create products that can be "merged"
 - Similar space and time steps etc.
 - Uncertainties need at a minimum to be comparable / compatible
 - Monte-carlo type ensembles of solutions would ensure calculable at any space or time scale?
 - Can we ensure the same error sources at least are considered?
 - Red noise (systematic / correlated) and white noise (random) terms both matter depending upon the application
 - BUT we can never cover every source of error?
 - Common challenges can have common solutions?
 - Interpolation
 - Averaging

