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August average SST from WOA98

• The ’98 WOA climatology

has a resolution of 1◦. It is very

smooth with a number of circu-

lar features. These are proba-

bly due to a large spherical ker-

nel.

• There is no upwelling off the

Iberian peninsula and a very

weak one in Western Africa.

Motivating Issue

1



To produce a realistic climatology we decided to obtain a
reconstruction of SSTs with the following properties:
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To produce a realistic climatology we decided to obtain a
reconstruction of SSTs with the following properties:

• The reconstruction must be smooth and realistic, when compared
to other existing products.

• Anomaly fields must capture medium- to large-scale features and
average zero everywhere

• Smooth trend fields.

• All fields must be accompanied by measures of uncertainty.

• The method must be useful in large geographical domains and
long time frames.

• Observational errors should be accounted for.

Goals
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We propose a statistical model based on the Bayesian hierarchical
structure. This consists of three layers:

• Observation Equation: relationship between observations and the
true state of nature.

• Process equation: probabilistic description of the space and time
variability of the state vector.

• Prior distributions: prior knowledge on the parameters that
define the previous two layers.

Bayesian Hierarchical Models

3



• The hierarchal approach offers a coherent probabilistic
framework to combine information from different sources.
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• The hierarchal approach offers a coherent probabilistic
framework to combine information from different sources.

• All estimation uncertainty is propagated through the different
levels of the model and fully accounted for.

• These models lend themselves to the use of Monte Carlo
methods. This provides for easy probabilistic inference for
quantities derived from the model parameters.

Bayesian Hierarchical Models
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A non-homogeneous spatially-varying process can be written as

X(s) =
m∑

i=1

b(s − s∗
i ; w(s))γi, γ ∼ N(0, K)

where, s∗
1, . . . , s

∗
m is a grid, and

b(s − j; ω) ≡






(
1 − ||s − j||2Σ

)ω1 if ||s − j||Σ < 1

0 otherwise.

and ω = (ω1, . . . , ω4).

Spatial Variability
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A non-homogeneous spatially-varying process can be written as

X(s) =
m∑

i=1

b(s − s∗
i ; w(s))γi, γ ∼ N(0, K)

where, s∗
1, . . . , s

∗
m is a grid, and

b(s − j; ω) ≡






(
1 − ||s − j||2Σ

)ω1 if ||s − j||Σ < 1

0 otherwise.

and ω = (ω1, . . . , ω4).

The distance is given as

||s − j||Σ ≡
√

((xs − xj), (ys − yj))Σ−1 ((xs − xj), (ys − yj))
T .
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The ellipsoidal shape is controlled by the parameters in

Σ−1 ≡



 Ψ1 +Ψ2 cos 2πω4 Ψ2 sin 2πω4

Ψ2 sin 2πω4 Ψ1 −Ψ2 cos 2πω4





Ψ =
1
2

(
1
a2

+
1

A2
,

1
a2

− 1
A2

)

a = L + ω2(U − L), A = a + ω3(U − a), ω2, ω3 ∈ (0, 1)

So the semi-minor and semi-major axes a and A belong to (L, U).
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1
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1
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1
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,

1
a2

− 1
A2

)

a = L + ω2(U − L), A = a + ω3(U − a), ω2, ω3 ∈ (0, 1)

So the semi-minor and semi-major axes a and A belong to (L, U).

The spatial variation of ω is obtained, with a normalized b, as

ω(s) =
m∑

i=1

b(s − s∗
i ; u)ρ(s∗

i ) u = (2, 1, 0, 0)

with appropriate uniform priors on each ρk(s∗
i ), k = 1, . . . , 4.

Spatial Variability
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The SST observation xi,m,y(s) corresponding to data set
i = 1, . . . , 4 (OSD, CTD, XBT, MBT), in month m, year y and
location s follows

xi,m,y(s) = θm,y(s) + εi,m,y(s), εi,m,y(s) ∼ N
(
0, τ2

i

)
.

Different τi allow for different observational error variances
depending on the instrument.

SST Reconstruction
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Climatology:

Ξm(s) =
1
30

1990∑

y=1961

θm,y(s),
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Climatology:

Ξm(s) =
1
30

1990∑

y=1961

θm,y(s),

Anomaly:
∆m,y(s) = θm,y(s) − Ξm(s).

SST Reconstruction
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The true SST is

θm,y(s) ∼ N
(∑

j
b(s − j;Λ(s))γ(j),Φ(s)2

)

where
γ(j) = α(j) + βt(j)wT

t + η(j)(t − 180),

j denotes a points in a 4◦ resolution grid, and

Φ(s)2 =
∑

j
b(s − j;Ω(s)) exp (σ(j)) .

Here t = m + 12(y − 1961) denotes time in months since December
1960. Note that θm,y(s) is continuous in space.

SST Reconstruction
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Lack of stationarity in time is handled by letting

βt ∼ N (βt−1, Wt)

and

wt =
(

sin
(

2πt

12

)
, cos

(
2πt

12

)
, sin

(
2πt

6

)
, cos

(
2πt

6

))
.

Where Wt is modeled using a space-dependent discount factor.

SST model
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The use of a compactly supported kernel allows for an efficient
parallel implementation. We use 13 processors, each one working
with two columns of J .
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The use of a compactly supported kernel allows for an efficient
parallel implementation. We use 13 processors, each one working
with two columns of J .

We use reasonably vague inverse gamma priors for all variance
parameters. Posterior inference shows that the data do provide
information about those parameters.

We run an MCMC. To determine convergence we use the
diagnostics available in BOA to set the burn-in (1,200 iterations),
the thinning (1/3) and the sample size (6,000 from the thinned
chain). We also performed two separate runs, a warm start
configuration (30◦) and a cold one (15◦).

Implementation
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August SST from WOA01 August SST from LS09

Results: August Climatology
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Results: Kernels Vs Currents
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The development of a model that considers temperature and
salinity jointly over a 3D domain needs to account for the following
issues:
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The development of a model that considers temperature and
salinity jointly over a 3D domain needs to account for the following
issues:

• Data sparsity. There are substantially more observations for the
surface of the ocean than for the deep water. Furthermore, salinity
is sampled about 10 times less than temperature.

• The column of water needs to satisfy a density stability
constraint. That is, density must increase with depth. Density is
related to temperature and salinity via the equation of state.

• The previous two points imply that we need to consider a
hierarchical structure for our statistical model that incorporates
some physical constraints.

Model for Salinity and Temperature
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A full description of the ocean dynamics requires the estimation of
the following properties:
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A full description of the ocean dynamics requires the estimation of
the following properties:

• Velocities: u = (ux, uy, uz)

• Temperature T and salinity S

• Pressure p and density ρ.

An Ocean Model
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Based on observations that we denote as Y we want to build a
statistical model to explore the posterior distribution

π(u, T, S, p, ρ|Y )

We write

π(u, T, S, p, ρ|Y ) = π(T, S|u, Y )π(u|ρ, p, Y )π(p|ρ, Y )π(ρ|Y )

For the remaining of the talk I will focus on the model for density,
π(ρ|Y ).

Ocean Model
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We let Yt = (Yt(s1), . . . , Yt(snt))T , be the vector of densities at
time t for all locations where records are available at that time.
Then

Yt ∼ N(F oρt, diag(ut))

where F o is an incidence matrix and ρt is a vector of stacked true,
unobserved, density profiles on a .25◦ resolution grid.

Observational Model
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Following the same framework of the SST model, we let

ρt ∼ N(F (µm(t) + Wγt), τI)

m(t) is the month corresponding to time t. Thus, there are 12
vectors µt that determine the regular seasonal cycle.

Process Model
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Following the same framework of the SST model, we let

ρt ∼ N(F (µm(t) + Wγt), τI)

m(t) is the month corresponding to time t. Thus, there are 12
vectors µt that determine the regular seasonal cycle.

The elements of µt are sampled from a multivariate normal
truncated to impose that its components are in increasing order. F

is obtained from Bezièr kernels centered on a 1◦ resolution grid.
Whence, the product Fµt has its components in increasing order.

Process Model
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W is a matrix of spatial factors and γt is a low dimensional vector
capturing time-varying trends and low frequency cycles. Thus

γt ∼ N(Gγt−1, H)

for a rotation matrix G and an appropriately chosen matrix H.

Process Model
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We considered a 2◦ × 2◦ grid with 33 layers in the vertical centered
at 39N 12W (off Lisbon). We used NODC’s OSD and CTD data
from 1970 to 1991

Preliminary Results
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Density Profile
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• We have developed spatio-temporal models for ocean variables
that are non-stationary in either space or time. We are able to
capture important space- and time-varying features of the ocean.
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• We have developed spatio-temporal models for ocean variables
that are non-stationary in either space or time. We are able to
capture important space- and time-varying features of the ocean.

• Our model includes observational errors and realistic descriptions
of the latent processes governing the evolution of ocean variables.

• The model is able to provide probabilistic assessments of the
variabilities included in the estimated quantities. All estimation
variabilities are accounted for in the final product.

• Our model is able to handle large data sets. By using kernels
with compact support and making use of the structure of the
CDLM we are able to parallelize the estimation algorithms.

Discussion

27



• Reference: Ricardo T. Lemos, Bruno Sansó (2006)
“Spatio-temporal Variability of Ocean Temperature in the Portugal
Current System”. Journal of Geophysical Research Oceans, 111,
C04010, doi:10.1029/2005JC003051.
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• Reference: Ricardo T. Lemos, Bruno Sansó (2006)
“Spatio-temporal Variability of Ocean Temperature in the Portugal
Current System”. Journal of Geophysical Research Oceans, 111,
C04010, doi:10.1029/2005JC003051.

• Reference: Ricardo T. Lemos, Bruno Sansó (2009) “A
Spatio-Temporal Model for Mean, Anomaly and Trend Fields of
North Atlantic Sea Surface Temperature (with discussion)”.
Journal of the American Statistical Association, 104, pp. 5–25.
Winner of the 2010 Mitchell Prize to the best applied
Bayesian paper!
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