The ERA-CLIM project

European Reanalysis of Global Climate Observations

Hans Hersbach

ECMWF reanalysis group: Dick Dee, Paul Poli, Carole Peubey, Cristian Codorean, Paul Berrisford, Roger Brugge, Hitoshi Sato, David Tan

Overview

- ERA-CLIM concept and objectives
- Overview of reanalysis at ECMWF
- Rationale behind reanalyses
- FRA-CLIM in more detail
- Concluding remarks

ERA-CLIM

European Reanalysis of Global Climate Observations

A three-year FP7 EU-funded collaborative research project

Integration and improvement of the 20C instrumental record

- Concerted effort in data recovery
 - mainly pre-1957 upper-air data, and surface data in sparsely observed areas
 - and preparation of input satellite data sets for reanalysis
- The collection of all data into a newly developed **Observation Feedback Archive** (OFA)
- An ambitious set of **pilot reanalyses** based on these archives to provide incremental:
 - quality assessment, improvement of consistency, bias estimates where possible,
 - information on inter-calibration between overlapping data sets,
 - address challenges in data poor areas in the first decades of the 20th century,
 - and to prepare for the **next comprehensive ERA** reanalysis.
- Open data access to all input observations + reanalysis products + quality feedback
- Partners: Met Office, Météo-France, EUMETSAT, Un. Vienna, Un. Bern, Un. Lisbon, RIHMI-WDC (Russia), DMC (Chile), ECMWF

ECMWF core activity: Global numerical weather prediction

ERA – ECMWF Reanalysis of atmosphere, land surface and ocean waves

ERA-15: 1979 – 1993 ERA-40: 1957 – 2001

ERA-Interim: 1989 onwards

ERA-CLIM:

European Reanalysis of Global Climate Observations

An EU FP7 project to *prepare* the next ECMWF reanalysis

Includes ERA-20C

Access to reanalysis data at www.ecmwf.int/research/era

Public data server: ~6000 registered users

Data products are updated monthly

Full resolution data expected June 2011

Climate change monitoring tools in development

ERA-interim paper:

Dee, Uppala, Simmons, Poli et. al, QJRMS, **April 2011**

• ERA-Interim reanalysis is continuing near real-time

Rationale behind reanalysis

Reanalysis:

- provides a proper framework for integrating and reconciling diverse sources of information about recent and present climate,
- combines observations with model information to produce a physically and dynamically coherent record of geophysical parameters.

Reanalysis aims to minimize spurious long-term trends by:

- using (in contrast to operational NWP) the same assimilation and forecast system throughout improvements in skill reflect improvements in the observing system,
- consistency checks between data sets and providing bias estimates, where possible.

Applications:

- verification and diagnosis of other NWP models
- Input to other models (e.g., tracer models)
- Providing climatologies
- Assessment of inter-consistency between observing systems
- Study for climate trends, improving
- Resource for climate services
-

Atmospheric reanalysis: ERA-Interim

ECMWF forecasts: 1980 – 2010

Changes in skill are due to:

- improvements in modelling and data assimilation
- evolution of the observing system
- · atmospheric predictability

ERA-Interim: 1979 – 2010

- uses a 2006 forecast system
- ERA-40 used a 2001 system
- re-forecasts of more uniform quality
- improvements in modelling and data assimilation outweigh improvements

in the observing system

Consistency between data sets: variational bias correction

MSU Ch2 radiance (provides information on tropospheric temperature): bias [K] as estimated by ERA-Interim, confirms inter-instrumental biases in the literature

Pinatubo 1991: effect on average global temperature

Although the effect of stratospheric volcanic sulphate was not accounted for :

ERA-Interim signals a correct change in glob temperature, supported by:

the extensive global observing system

ERA-Interim variational bias correction in
HIRS water-vapour radiances counter-balan aerosol effect on the radiative transfer mode which was missed in ERA-40

European Reanalysis of Global Climate Observations

Partners: Met Office, Météo-France, EUMETSAT, Un. Vienna, Un. Bern, Un. Lisbon, RIHMI-WDC (Russia), DMC (Chile), ECMWF

ERA-CLIM is composed of four thematic work packages:

- Development of the observational record for the early 20th century (WPI)
 - Existing data sets (CHUAN, ISPD, ICOADS, ...)
 - Data recovery
- Preparation/collection of (re-processed) satellite observations (WP2)
- Boundary conditions and forcing data (WP2)
 - SST and Sea ice: HadISST2 (see presentation by John Kennedy, Nick Rayner)
 - CMIP5 forcing for radiation and surface parametrization
- Development of an Observation Feedback Archive (OFA) (WP3)
- Production of pilot reanalyses (WP3)
- Assessment and reduction of data uncertainties (WP4)

Building on the 20th century observational network

- Surface data has been available throughout, but initially sparsely distributed
- The International Geophysical Year (IGY) marked the start of the extension of the global radiosonde network and data exchange
- The satellite era revolutionized upper-air and stratospheric coverage and general coverage in the southern hemisphere

European Reanalysis of Global Climate Observations

Partners: Met Office, Météo-France, EUMETSAT, Un. Vienna, Un. Bern, Un. Lisbon, RIHMI-WDC (Russia), DMC (Chile), ECMWF

ERA-CLIM is composed of four thematic work packages:

• Development of the observational record for the early 20th century (WPI)

• Existing data sets (CHUAN, ISPD, ICOADS, ...)

Data recovery

Preparation/collection of (re-processed) satellite observations (WP2)

Boundary conditions and forcing data

and forcing data (WP2)

• SST and Sea ice: HadISST2 (Nick Rayner, John Kennedy)

• CMIP5 forcing for radiation and surface parametrization

Development of an Observation Feedback Archive (OFA) (WP3)

Production of pilot reanalyses (WP3)

Assessment and reduction of data uncertainties (WP4)

The CHUAN data set

Comprehensive Historical Upper-Air Network (Stickler et. al. 2009)

Compiled by University of Bern

- 12.6 million profiles prior to 1958
- 5.3 million prior to 1948
- geopotential height, T, wind, humidity
- to be extended within ERA-CLIM

The ISPD data set

International Surface Pressure Data bank (Version 2.2)

Courtesy: 20th Century Reanalysis Project (NOAA/CIRES)

- surface pressure and MSLP
- Includes ICOADS data
- first data set being imported into OFA

The ICOADS data set

International Comprehensive Ocean-Atmosphere Data Set

- ERA-CLIM will use MSLP, wind, T2m, Rh2m
- 2nd data set being imported into OFA

European Reanalysis of Global Climate Observations

Partners: Met Office, Météo-France, EUMETSAT, Un. Vienna, Un. Bern, Un. Lisbon, RIHMI-WDC (Russia), DMC (Chile), ECMWF

ERA-CLIM is composed	of four thematic	work packages:
----------------------	------------------	----------------

Development of the observational record for the early 20th century (WPI)

• Existing data sets (CHUAN, ISPD, ICOADS, ...)

Data recovery

Preparation/collection of (re-processed) satellite observations (WP2)

Boundary conditions and forcing data

(WP2)

• SST and Sea ice: HadISST2 (Nick Rayner, John Kennedy)

• CMIP5 forcing for radiation and surface parametrization

Development of an Observation Feedback Archive (OFA)

(WP3)

Production of pilot reanalyses

(WP3)

Assessment and reduction of data uncertainties

(WP4)

ERA-CLIM data recovery and digitization

Focus on pre-1957 meteorological data in sensitive regions

Contributions from Met Office/ACRE, Météo-France, Un. Vienna, Un. Bern, Un. Lisbon, RIHMI-WDC (Russia), DMC (Chile)

- Inventories of original paper copies, digitizing tools
- Imaging and digitizing
- Quality control

Map of historical data (pre-1957) to be recovered by ERA-Clim

European Reanalysis of Global Climate Observations

Partners: Met Office, Météo-France, EUMETSAT, Un. Vienna, Un. Bern, Un. Lisbon, RIHMI-WDC (Russia), DMC (Chile), ECMWF

ERA-CLIM is composed of four thematic work packages:

- Development of the observational record for the early 20th century (WPI)
 - Existing data sets (CHUAN, ISPD, ICOADS, ...)
 - Data recovery
- Preparation/collection of (re-processed) satellite observations (WP2)
- Boundary conditions and forcing data

(WP2)

- SST and Sea ice: HadISST2 (see presentation by John Kennedy, Nick Rayner)
- CMIP5 forcing for radiation and surface parametrization
- Development of an Observation Feedback Archive (OFA) (WP3)
- Production of pilot reanalyses (WP3)
- Assessment and reduction of data uncertainties (WP4)

CMIP5 forcing for radiation and surface parametrization

Besides boundary conditions at the ocean surface (SST and Sea ice), an atmospheric model relies on a number of input fields, that relate to:

- Radiation
 - Solar forcing: total solar irradiance
 - •Greenhouse gases: CO2, CH4, N20, CFC-11, CFC-12, ...
 - Ozone: is prognostic variable, but prescribed inside radiation scheme
 - •Tropospheric aerosols: sulphate, black carbon, organic, dust, sea salt
 - •Stratospheric volcanic aerosols: sulphate, dust
 - Albedo
- Surface parametrization
 - •Vegetation type and cover, LAI,...
- At ECMWF these quantities are prescribed,
 - but have evolved during the 20th century
 - ✓ Incorporate CMIP5-recommended forcing data

European Reanalysis of Global Climate Observations

Partners: Met Office, Météo-France, EUMETSAT, Un. Vienna, Un. Bern, Un.Lisbon, RIHMI-WDC (Russia), DMC (Chile), ECMWF

ERA-CLIM is composed of four thematic work packages:

- Development of the observational record for the early 20th century (WPI)
 - Existing data sets (CHUAN, ISPD, ICOADS, ...)
 - Data recovery
- Preparation/collection of (re-processed) satellite observations (WP2)
- Boundary conditions and forcing data
 - SST and Sea ice: HadISST2 (see presentations by John Kennedy, Nick Rayner)
 - CMIP5 forcing for radiation and surface parametrization
- Development of an Observation Feedback Archive (OFA)

(WP3) Production of pilot reanalyses (WP3)

Assessment and reduction of data uncertainties

(WP4)

(WP2)

The observation feedback archive (OFA)

- All data will be placed in a uniform format based on ODB
- Model feedback information is added
 - easy to extract (from MARS archive, query language)
 - easy to use (ODB, NetCDF, ASCII supported)

Model feedback provides powerful information on:

- data quality
- consistency between various data sets
- evolving systematic errors
- Accessible via a web interface

European Reanalysis of Global Climate Observations

Partners: Met Office, Météo-France, EUMETSAT, Un. Vienna, Un. Bern, Un. Lisbon, RIHMI-WDC (Russia), DMC (Chile), ECMWF

ERA-CLIM is composed of four thematic work packages:

- Development of the observational record for the early 20th century (WPI)
 - Existing data sets (CHUAN, ISPD, ICOADS, ...)
 - Data recovery
- Preparation/collection of (re-processed) satellite observations (WP2)
- Boundary conditions and forcing data
 - SST and Sea ice: HadISST2 (see presentations by John Kennedy, Nick Rayner)
 - CMIP5 forcing for radiation and surface parametrization
- Development of an Observation Feedback Archive (OFA)
- Production of pilot reanalyses
- Assessment and reduction of data uncertainties

(WP3)

(WP2)

(WP3)

(WP4)

ERA-CLIM pilot reanalyses

	What	Period	Resolution	Ens	Vol
ERA-Int	Interim reanalysis	1989-NRT	T255L60	1	33 Tb
ERA-20CM	AMIP ensemble	1900-2011	T159L91	10	
ERA-20C	EDA using sfc obs only	1900-2011	T159L91	10	655 Tb
ERA-20C LAND	Land surface using ERA-P1	1900-2011	T799	1	77 Tb
ERA- PRESAT	Reanalysis using all obs	2 early decades	T159L91	10	180 Tb
ERA-SAT	To replace ERA-Interim	1979-NRT	T511L91	1	234 Tb
ERA-?	20th-century reanalysis	1900-NRT	T511L91	1	1062 Tb

Concluding remarks

- All new ERA products to be freely available from now on
 - ERA-Interim full-resolution data server going live soon
- •The ERA-CLIM project is a FP7-EU funded project running from 2011-2013.
- A large effort is being made in data recovery and digitization :
 - pre-1957 upper-air data, and surface observations in sparsely observed areas
 - this effort will contribute to the existing ICOADS and CHUAN data sets
- ERA-CLIM will use HadISST2 (see presentation by John Kennedy)
- All observations will be held in a newly developed observation feedback archive
- Some requirements from reanalysis
 - Data set versioning and source identification
 - Traceability of individual observations (duplicates,...)
 - ERA needs multivariate sub-daily observations
 - Any available information on quality
 - Open data policy

What we can do with sparse observations:

4D-Var analysis of the 500hPa geopotential height surface 0 UTC, 15 February 2005

using all available observations

using surface pressure observations only

