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Outline

Bluffer’s Guide to satellite SST

What is “climate quality” for SST from space?

Climate quality is possible ... AATSR example.

Going further: SST Climate Change Initiative

The long view: Sentinels and beyond



1. Bluffer’s Guide
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Cloud Detection

Knowledge of sensor & channels

Cloud detection
algorithm

Cloud mask

Knowledge of atmosphere
(climatological or NWP)



General SST retrieval expression

X = V
?

Empirical regression Regression based

to matched in situ on radiative transfer

observations simulations

Most products except ... ... (A)ATSREs,
Meteo-France,
NOAA-GOES

Merchant C J and Le Borgne P, J Atmos Oceanic Technology, 22 (11) 1734-1746, 2004.
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Infrared sensors ~ 10 um
“SST-skin”

Contact thermometers

Ships/Buoys ~ 10s cm or m
“SST-depth”

Day time, strong
solar radiation and light
winds



AATSR e 1991 — present from ATSR,

instrument

Dual viewing ‘/ ATSR-2, AATSR

geometry
* High spec:
sub-satellite — Two point calibration
track
P — Cal drift <3 cK / mission
’ — Noise ~0.05 K
— Dual-view

— Spectral response accurately
known

Nadir view swath

e Retrievals by radiative
transfer modelling

Forward view swath

* Designed for SST/climate
not weather operations



2. Climate quality satellite SST?



Why satellite SST for climate?

e Stable, accurate, independent record of SST
— to re-assess recent global change

— to extend the assessment of change into regions
where in situ observations are too sparse

— at higher spatial resolution for new climate models

— to re-evaluate modes of SST variability & historical
reconstructions

— to initialise ocean for seasonal to decadal climate
prediction
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Challenges

* Challenges for ‘climate quality’ from satellite SST
— Indirect mode of observation -- credibility

— Few sensors ... global consistency, but ...
» systematic errors and stability are critical
* some error components are correlated
* homogenisation, e.g., using overlaps of missions

— Skin SST is observed: how to relate historically?
— Changing local time of observations: risk of aliasing



ATSR Reprocessing for Climate

e >15 years global coverage, 0.1 deg

e Accuracy < 0.1 K

e Stability of 0.05 K per decade

e Both skin and depth SSTs

e Homogeneous

e Comprehensive error characterization
e Independent of other records (in situ)

Merchant C J, D Llewellyn-Jones, R W Saunders, N A Rayner, EC

Kent, et al. (2008), Deriving a sea surface temperature record suitable

for climate change research from the along-track scanning radiometers,
Adv. Sp. Res, 41 (1), 1-11. doi:10.1016/j.asr.2007.07.041

oo University of
o Leicester

W NATURAL

ENVIRONMENT
RESEARCH COUNCIL

DEPARTMENT OF
ENERGY
L‘ IRV NIZCHANGE




Requirement | GCOS(2006) ATSR Reprocessing | SST CClI URD L3/L4 | SST CClI plan
for Climate breakthru’ (baseline)

Accuracy / 0.25 K 0.1K 0.02 K/ 100 km 0.1 K/ 1000 km
demonstrated on scale
Precision None No target 0.05 K/ 100 km Varies, quantify it
Stability 0.1 K/ decade 0.05 K per decade  0.02 K per decade; 0.05K per decade,
0.05 K seasonally, seasonally, diurnally
diurnally
Spatial 1 km 0.1 deg 0.1 deg 0.05 deg
resolution
Temporal 3 hourly Day/night on Day/night (UTC) Day/night on
resolution “observing cycle”  standardized local standardized local
time (L3) time (L3)
Uncertainty None Characterize Total uncertainty Total, systematic and
information uncorrelated
Type of SST Blended Skin and buoy- Skin & buoy-depth  Skin and buoy-depth
depth

Period 1991 - 2009 ~1980 - now 1991 - 2010



User requirement for validated
uncertainty information

* Uncertainty in an EO product is not a straightforward quantity

e For SST, there are three or four components
— Calibration / forward model uncertainty
* Highly correlated over time and space
— Radiometric uncertainty
* Uncorrelated over time and space
— Retrieval (“algorithmic”) uncertainty
* Partially decorrelates above synoptic time and space scales

— Contamination uncertainty
* Low frequency, erratic in time and space, asymmetric

* Asingle statistic (such as total uncertainty) is inadequate for
some purposes



3. Climate quality is possible

Example of AATSR from ARC project



ARC AATSR SST bias cf. drifting buoys
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Embury, O., C. J. Merchant and G. K. Corlett (accepted), A Reprocessing for Climate of Sea
Surface Temperature from the Along-Track Scanning Radiometers: Preliminary validation,
accounting for skin and diurnal variability, Rem. Sens. Env.



Skin-to-depth model validation in ARC

AATSR skin SST — Drifting Buoy / K
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Diurnal treatment in ARC

e SST-skin[obs t] - SST-depth|ref t]
* Reference time: 1030 h /2230 h

Solar Zenith: 30- 60 Solar Zenith: 120-150
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Embury, O., C. J. Merchant and G. K. Corlett (accepted), A Reprocessing for Climate of Sea
Surface Temperature from the Along-Track Scanning Radiometers: Preliminary validation,
accounting for skin and diurnal variability, Rem. Sens. Env.



Stability against moorings
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See Dave Berry’s poster



Stability against moorings

Region Period Time of Trend 95% confidence interval
day (°C decade™) (°C decade™)
Tropics All (1991 — 2009) | Day 0.026 0.006 < trend < 0.045
Tropics All (1991 — 2009) | Night 0.044 0.020 < trend < 0.069
Tropics > 1993 Day -0.006 -0.026 <trend < 0.015
Tropics > 1993 Night 0.010 -0.014 <trend < 0.034
Tropics ATSR2/AATSR | Day -0.014 -0.037 < trend < 0.009
Tropics ATSR2/AATSR Night -0.002 -0.020 <trend < 0.016

See Dave Berry’s poster




4. Going further: SST CCl



Characteristics of Long Term CCI SST

PATHFINDER  ARC CCI SST
Sensors AVHRR ATSR AVHRR + ATSR
Tied to Drifting buoys |Independent Independent
Homogenized No Yes Yes
Accounting for diurnal effects No Yes Yes
Meets GCOS accuracy (0.25 K) No Yes Yes
Meets ARC target accuracy (0.1 K) |No Mostly Yes/mostly
Retrieval method (TBC) Coefficients  |Coefficients Optimal
Meets GCOS stability No Likely Likely
Stability quantified No Yes Yes
Clearly defined SST No SST-skin, depth SST-skin, sub-skin, depth
Quantified uncertainties No Yes Yes
Spatial resolution 4 km 0.1° 4 km / 0.05°
GHRSST & netCDF compliant No No Yes
Period 1984 onwards 1991 - 2009 1991 - 2010




New independent SST retrieval ﬁ

e Shared multi-sensor match-up dataset (MMD)

e Optimal estimation (OE)
— AVHRRSs tied to ATSRs (brightness temperatures)
— this will give accuracy, stability & independence
— OE necessary for required single-view accuracy



Full RTM

ATSR
Coefficients Query & Extract
Observed
ATSRBTs
ATSRSSTs Matched
ECMWF NWP
Fast RTM Simulated BTs Observed BTs
for sensorX for sensorX Deve I O pment
logic for OE
Bias correction
forRTM
Low-bias Retrieved In situ SSTs
independent OE2 SSTs Compare
algorithm

Report



Equator crossing time /h

S
. . National Centre for /A
V H R R t Earth Observation .
A Oorpoi rift 5o [ )iz
& S

a,d

— NEwhteN8.d,d MNisd.d
T g Sindd

:M"MMM’/ , N6 da 8d,n N1adn
) T B T N B B B




DV /K
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DV bias from 10:30 /K
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Approach to uncertainty ~ * ga

* Uncertainty estimation is part of retrieval

* (Some) users need to know about variability of uncertainty
— need an uncertainty for every SST

 Components of uncertainty have different correlation
properties. Propagation of uncertainty from L2 to L3 and L4
needs to address each component appropriately.

* Uncertainty estimates need to be validated



Algorithm R&D & validation

* Open algorithm selection exercise
* Test, train, blind methodology

* Fully independent product validation
 Reserved in situ data
e Validate SSTs and their attached uncertainties



5. The long view



Sentinel 3 inc. SLSTR




Climate Data Record operations

Operational CDR v1

Pre-op v2 Operational CDR v2

<
Science-team
> scrutiny

Reprocess
CDR

Science-team
scrutiny

Reprocess
CDR

Problem

identification
Artifacts, errors,
opportunities

Prototype

Problem

identification
Artifacts, errors,
opportunities

Prototype

Problem

solving
Understand,

Problem

Climate Down- innovate, improve
service stream v K solving
id . Understand,
providers users Climate Down- innovate, improve
service stream
External changes: providers users

New FCDRs, sensors etc.
Emerging requirements

External changes: New ECDRs, sensors etc. Emerging requirements




New technology for accuracy & stability

1" Cavity
Aperture

Thermofoil

Aluminum
Heater

Enclosure

Aluminum
Cavity

Thermistor
h Temperature

Sensors { ( J ‘\
@
Tobar
Thermal
Isolator

0.38 g of Ga melt material

placed into thermistor housing Blackbody
modified with stainless steel <
sleeve and nylon plug. Cavity

http://www.ssec.wisc.edu/media/newsletter/winter09/sensormaterials.pdf




New technology for accuracy & stability
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http://www.ssec.wisc.edu/media/newsletter/winter09/sensormaterials.pdf



Long-term prospect g

Better integration and use of complementarity

— John Kennedy, Tuesday a.m.

215t C climate records will be satellite + in situ SST

Climate quality can be achieved with right instrument

Challenge is to better exploit this throughout the satellite
constellation, for the long run



