JCOMM Technical Workshop on Wave Measurements New York October 2 & 3, 2008

Integrated Science Data Management Gestion des données scientifiques intégrées

Canada


Bruce Bradshaw Wave & Drifting Buoy Programme Manager

Integrated Science Data Management – Fisheries and Oceans Canada

ISDM Integrated Science Data Management

A Branch of DFO Science

Formed in 2006 by the merger of DFO's Marine Environmental Data Service and the Engineering and Geomatics Branch of CHS.

Continuously Managed Archives

- ➤ Waves
- > Argo
- Tides & Water Levels
- Physical & Chemical Profiles
- Drifting & Moored Buoys
- Contaminants & Invasive Species...
- Navigation and Chart Services
- ➤ GeoPortal...

*

Fisheries and Oceans Canada

Pêches et Océans Canada

Canadian Hydrographic Service

Integrated Science Data Management Gestion des données scientifiques intégrées

ISDM & International Data Management

ISDM Participates in several JCOMM Data Management Programmes

Work consists of

- Procedures for end-to-end data management
- Standards (metadata, formats, QC, etc.)
- Integrating ice, ocean, meteorological climatology

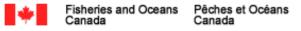
An International Data Centre within the Intergovernmental Oceanographic Data and Information Exchange programme

Work consists of

• Sharing data, experience and expertise

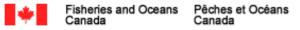
• Collaborating on a number of projects with international partners including the GTSPP, GOSUD and GLOSS

• ISDM operates two world data centres, one for real-time profiles and one for surface drifter data



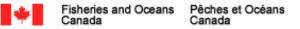
ISDM as a Data Centre

• ISDM manages data in the real-time (hours-days) and delayed mode (months to years).


• We receive data from the Global Telecommunications System, and others, as often as every 15 minutes

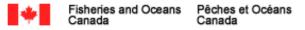
- We send data through the GTS every 6 hours.
- We accept data from DFO and international partners months and years after collection.
- We add value by carrying out QC, duplicates identification and the standardization of content and structure.
- We deliver data to clients daily, weekly and on request.

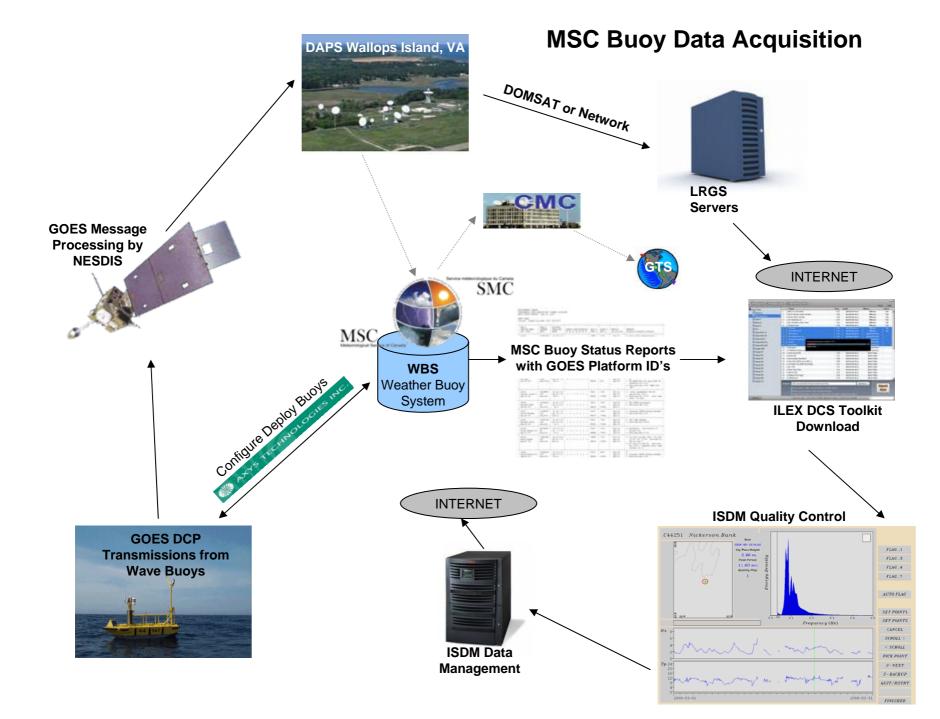
ISDM Wave Data Services


- From the early 70's to mid 90's MEDS developed and maintained a complete scientific, engineering and field buoy programme.
- National archive of wave data with:
 - 8 million measured spectra
 - 300,000 new MSC spectra/year
 - 500,000 timeseries records
 - several model and hindcast datasets (AES40, MSC50, Beaufort, GL...)
 - Environmental Data collected by the Oil & Gas industry
- All data is available online or by request. http://www.meds-sdmm.dfo-mpo.gc.ca

The ISDM Wave Data Services

We describe our services in terms of the following four steps:

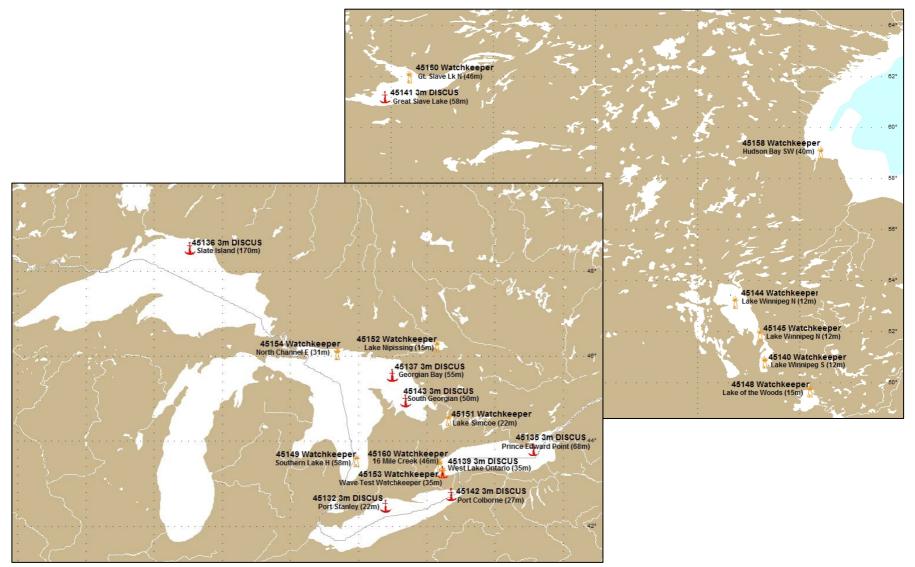




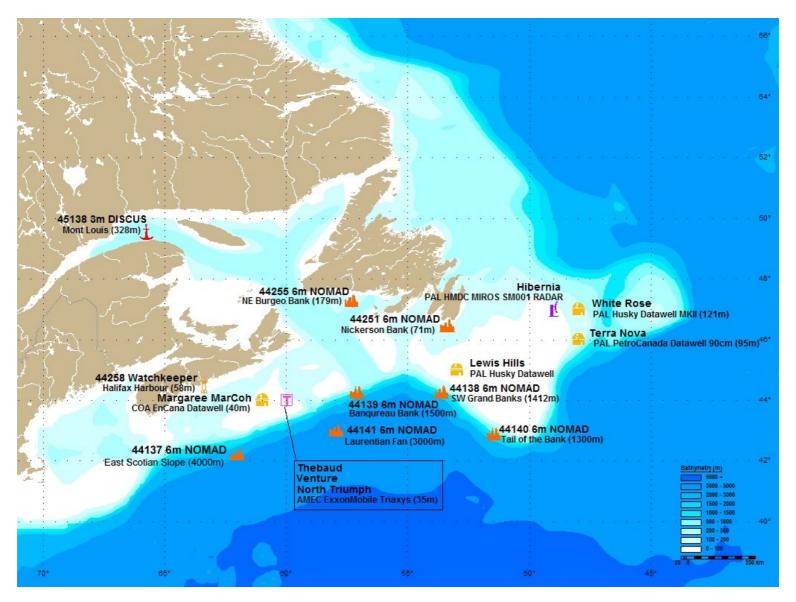
Wave Data Acquisition

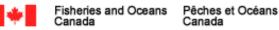
All wave and ancillary data from the Canadian area of interest (n of 35)

- Meteorological and oceanographic data from MSC weather buoy network transmitted over the GOES satellite network
- Annual oil and gas industry submissions
- Hindcast and model data
- Other engineering or scientific research data (altimeter, radar etc.)



Pacific Buoy Network





Lake Buoy Network

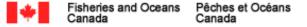
East Coast Buoy Network

Typical Daily MSC Acquisition

- 47 buoys * 24 hours = 1128 possible messages
- DCS Toolkit gets 1105 headers and messages (22 missed scheduled transmission, 1 transmission parity error)
- 1058 records decoded from the ASCII and PSUEDO ASCII portions of the original buoy messages ready for visual inspection and archival

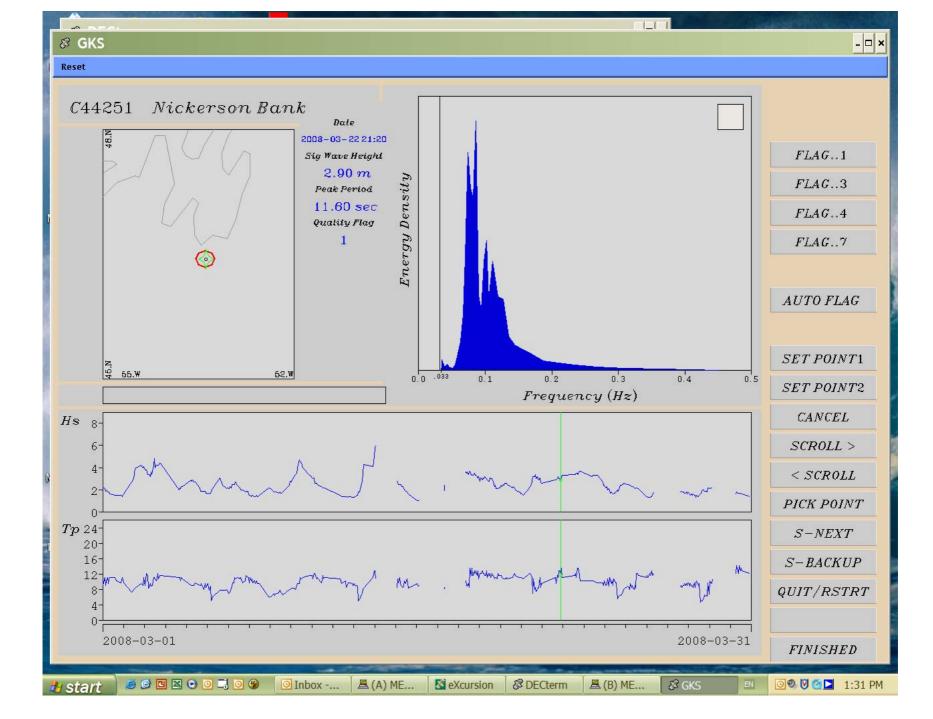
(47 truncated/garbled messages or with negative spectral densities)

• Approximately 94% recovery


GOES Message Format

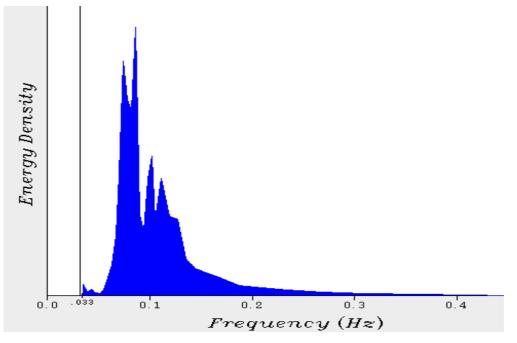
4750257408244161409G40-1NN081EUP00337 45167 1537 WKPR 46/// /055058(/000000) 10195 49795(4////) 22200 00197 1213007 333 912074(912000) WQ12029 A19999 A2000 A3139 A4130 A534// A62010 A7145 A95047.998,09644.019 A16+0000 A17001 A19001 A200 B21F15111111 \$|DE`eOA@@`@`@`@`@`@`@`@`@`@`AfRPn@PGQEA~[GnTowO~OmoboLNHnlmHL~JR1MLjJRj`Jdi}hAhPh UhNhQHNgwgUgEGWfheAEldVdmc|BibuB~bwEpH}hgG/

Data Recovery Challenges


- Dependant on an up to date list of all GOES transmitters ID's in use by EC.
- Transmission gaps resulting from deteriorating satellite orbits (elevation angle for NW buoys), environmental conditions and transmitter malfunctions.
- Data recovery has improved significantly with transmitter improvements, satellite networks, download protocols and better coordination between MSC and ISDM.

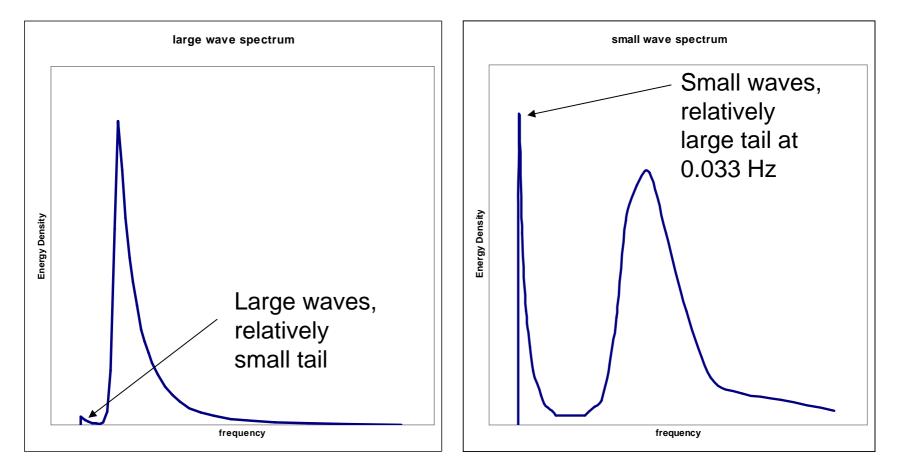
Wave Data Processing

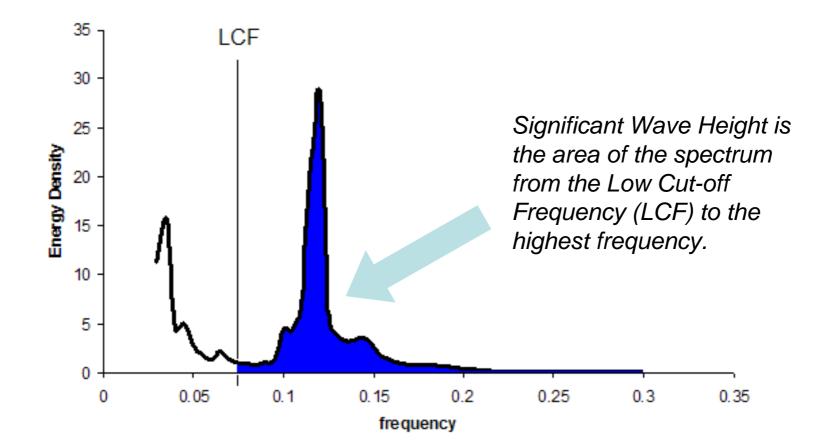
Data Quality Control and Spectral Analysis for


- Buoy Deployment Position
- Wave Instrument Operation
- Spectral Frequency Range
- Spectral Shape
- Significant Wave Height
- Peak Period

Data Analysis and Quality Control Methodologies from

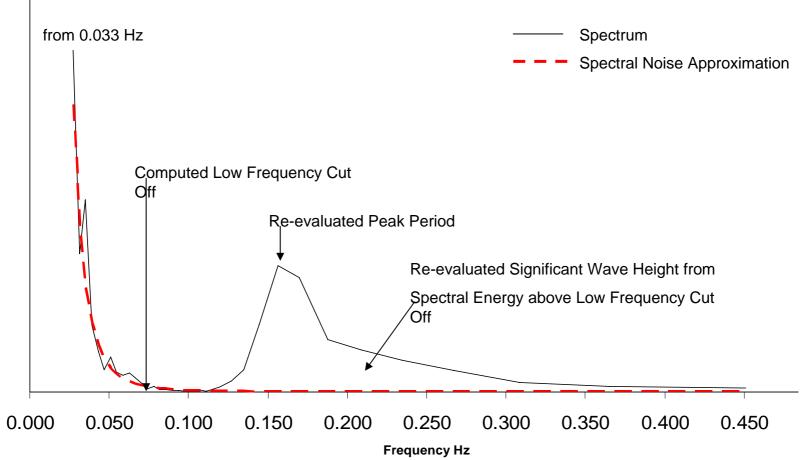
- ISDM (DFO Canada) procedures
- AXYS Technologies spectral transfer function
- WMO formulae for spectral parameters
- IOC Manual of Quality Control


Calculating Significant Wave Height (Hs) and Peak Period (Tp) from the Spectrum


- Hs is from the total spectral energy
- Tp from the frequency with the highest energy
- In small seas, low frequency noise appears in the spectrum and causes errors in the Hs and Tp values.
- The noise has to be removed to get accurate Hs and Tp.

Low Frequency Noise "Tail" in Small Seas

- Standard spectral lowest frequency is 0.033 Hz
- Tail results of low frequency energy amplification transfer function.

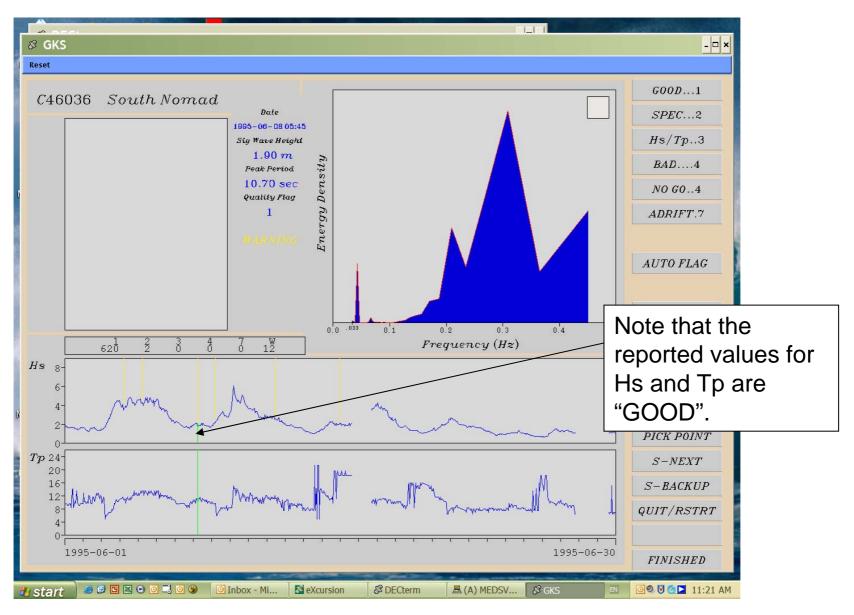


Cut Off the Tail

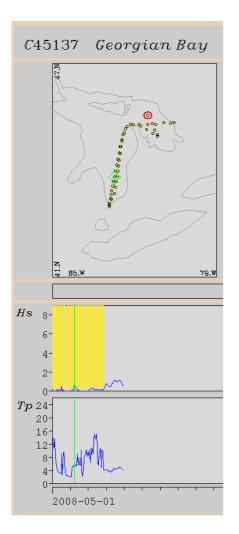
Find the Low Cut-off Frequency

by removing the low frequency spectral noise "tail"

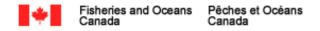
Spectral Analysis and Quality Control


Includes:

- Comparison of reported significant wave height (Hs) and peak period (Tp) to values computed from the spectrum.
- Physics in the spectrum, such as limits to wave steepness and zero crossing.
- Wave height ranges and continuity or changes over time.
- Comparison of GPS position to reported deployment station locations

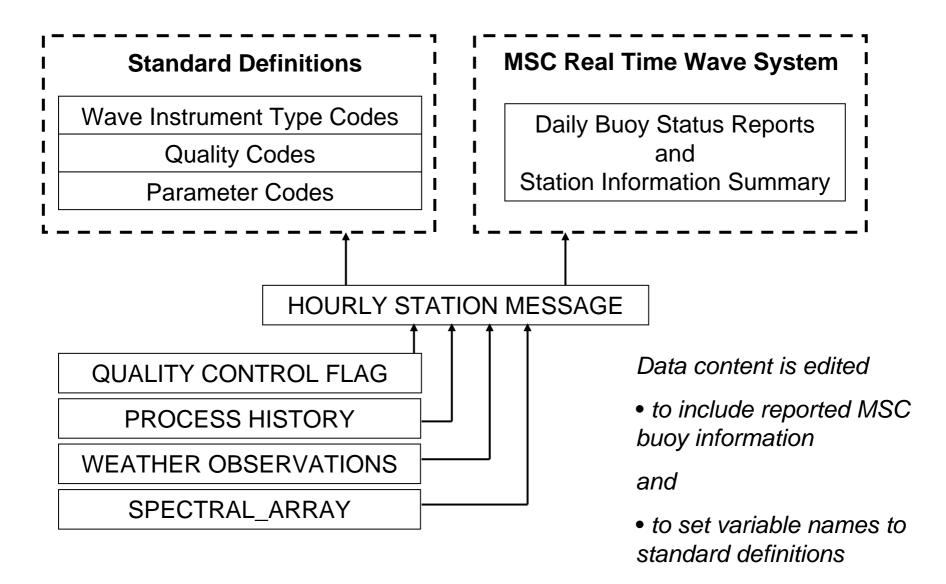

Our system uses automated tests and visual checks which result in:

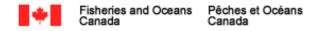
- Reported values changed to computed ones where appropriate
- Quality Control Flags for bad or corrupted spectra, bad or changed Hs and Tp, or buoys gone adrift or transmitting when not deployed.


Corrupted Spectrum Transmission Error

Buoy Transmitting Off of Station

- 1. Station position is in red. Buoy is traveling, and plotted as a yellow track.
- 2. Auto QC uses the data message GPS locations, and issues warnings as yellow markers.
- 3. Our technician flags all of these off station data messages as "BAD".

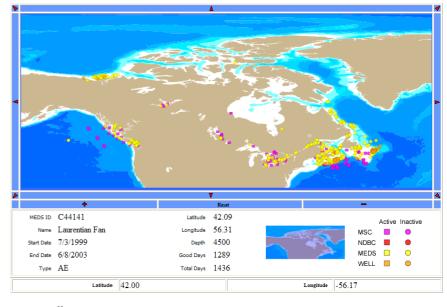


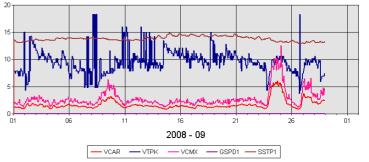

Wave Data Archival

Enterprise Architecture in the ISDM Archive Technology

- We are making Oracle Databases, based on data standards.
- Our programmers are developing scientific data management applications in Java, together with the Oracle databases.
- We are beginning to base applications around standard Java libraries for oceanography.
- We employ multi-tier web and application servers including service oriented architecture (SOA) and J2EE.

Archive Tables for MSC Data





Wave Data Services Providing Access to Data

ISDM Online Resources

C46207

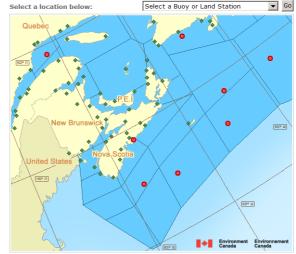
Date		QC	<u>SWH</u>	PP	VCMX	GSPD1	SSTP1
01/09/2008	00:26	1	1.21	7.88	2.1	0.0	13.6
01/09/2008	01:26	1	1.25	7.88	1.9	0.0	13.6
01/09/2008	02:26	1	1.30	7.88	2.2	0.0	13.5
01/09/2008	03:26	1	1.24	7.42	1.9	0.0	13.4
01/09/2008	04:26	1	1.22	7.88	1.9	0.0	13.3
01/09/2008	05:26	1	1.20	7.88	1.8	0.0	13.2
01/09/2008	06:26	1	1.20	7.88	1.7	0.0	13.2
01/09/2008	07:26	1	1.23	7.88	1.9	0.0	13.2
01/09/2008	08:26	1	1.26	7.42	2.1	0.0	13.1
01/09/2008	09:26	1	1.27	6.92	2.2	0.0	13.1
01/09/2008	10.26	1	1 12	7 88	21	0 0	13.1

Environment Canada Marine Weather

East Scotian Slope

Forecast Weather Conditions Ice Conditions Warnings Synopsis Maps Glossary Another Area

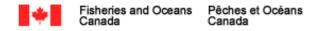
Past 24 Hour Conditions


Current Conditions Past 24 Hour Conditions Regional Summary

Southwestern Grand Banks - 44138

05:00 PM ADT 30 September 2008

Date / Time	Wind	Wave height	Wave period	Pressure		Water temp				
(ADT)	(<u>knots</u>)	(m)	(s)	(kPa)	(°C)	(°C)				
30 September 2008										
17:00	NNE 9 gust 11	2.5	12	101.0	15	16				
16:00	NNE 7 gust 7	3.0	13	101.0	15	16				
15:00	NE 5 gust 7	3.0	12	101.0	15	16				
14:00	NE 7 gust 7	3.0	12	101.0	15	15				
13:00	ENE 7 gust 9	3.0	13	101.1	15	16				
12:00	E 7 gust 9	2.5	12	101.1	15	16				
11:00	E 9 gust 11	2.5	11	101.2	15	15				
10:00	ENE 9 gust 11	2.0	12	101.2	15	15				
9:00	ENE 7 gust 9	2.0	9	101.2	15	15				
8:00	ENE 7 gust 9	2.0	12	101.2	15	15				
7:00	ENE 7 gust 11	2.5	12	101.2	15	15				
6:00	ENE 7 gust 9	2.5	11	101.2	15	15				
5:00	NE 5 gust 7	2.5	12	101.3	15	15				
4:00	ENE 7 gust 11	2.5	11	101.3	15	15				
3:00	ENE 11 gust 13	3.0	10	101.3	15	15				
2:00	ENE 7 gust 11	3.0	12	101.3	16	16				
1:00	ENE 11 gust 13	3.0	11	101.4	15	16				
00:00	ENE 9 gust 11	3.0	12	101.4	15	16				


If you require additional historical weather information please visit Marine Environmental Data Services

Legend:
Buoy
Land Station

The 10% Difference

- Low frequency cutoff accounts for some reduction in SWH for buoys in less than 233 m since 2002.
- SWS-1 indicated that the strap-down accelerometer consistently undervalues wave heights by about 10% over gimballed Datawell MKII.
- Differences in American/Canadian sampling and timeseries processing onboard the buoys.
 - If SWS TS data is available it might be worth comparing Spectra/SWH/PP from different processors.

ISDM Integrated Science Data Management : Bruce Bradshaw