The IOOS 'First 5 Standard' for Directional Wave Measurements

1) What are the First 5?

2) Developing a First 5 standard through instrument intercomparisons.

3) The multi-use platform challenge.

The Big 3

X, Y, Z

Pressure Sensors Accelerometers Tilt sensors Angular Rate Sensors Acoustic Sensors GPS

The Big 3: X, Y, Z \rightarrow Time Series Analysis \rightarrow The First 5: S(f),a1(f),b1(f),a2(f),b2(f) !!

		0						
freq	Band	energy	Dmean	a1	b1	a2	b2	
HZ	width	m*m/Hz	deg					
0.0250	0.0050	0.0028	321	0.1920	-0.1567	-0.3925	-0.6345	
0.0300	0.0050	0.0035	115	-0.1076	0.2259	-0.5132	-0.5796	
0.0350	0.0050	0.0046	173	-0.2883	0.0348	-0.2973	-0.5084	
0.0400	0.0050	0.0062	303	0.2602	-0.4085	-0.1606	-0.6449	
0.0450	0.0050	0.0106	241	-0.0693	-0.1232	0.1890	-0.4245	
0.0500	0.0050	0.0664	295	0.2434	-0.5111	-0.0182	-0.3324	
0.0550	0.0050	0.4436	272	0.0230	-0.8426	-0.5614	-0.1069	
0.0600	0.0050	2.4041	287	0.2594	-0.8467	-0.6409	-0.3178	
0.0650	0.0050	4.6515	295	0.3995	-0.0367	-0.5525	-0.6727	
0.0700	0.0050	5.2446	298	0.4468	-0.8304	-0.4730	-0.7269	
0.0750	0.0050	1 9294	310	0 5513	0.6680	0 2944	0 7309	
0.0800	0.0050	1.4582	349	0.7292	-0.1430	0.2632	0.0403	
0.0850	0.0050	2.5656	328	0.7689	-0.4840	0.2847	-0.6974	
0.0900	0.0050	0.6455	352	0.7463	-0.1086	0.4258	-0.0207	
0.0950	0.0050	0.6295	329	0.7213	-0.4297	0.2088	-0.6399	
0.1013	0.0075	0.7499	0	0.6994	0.0019	0.2030	0.0206	
0.1100	0.0100	0.5782	27	0.6616	0.3353	0.1029	0.4937	
0.1200	0.0100	0.3596	23	0.7253	0.3028	0.2794	0.4324	
0.1300	0.0100	0.1433	10	0.5246	0.0925	0.1332	-0.0804	
0.1400	0.0100	0.0918	11	0.5567	0.1123	0.2326	0.1826	
0.1500	0.0100	0.1041	17	0.6158	0.1886	0.2376	0.2832	
0.1600	0.0100	0.0779	6	0.5846	0.0592	0.0527	0.2101	
0.1700	0.0100	0.0458	11	0.4591	0.0926	-0.0412	0.1988	

S

The Directional Spectrum

Wave Direction θ

$$\begin{split} S(f, \theta) = S(f)[a1 \cdot cos(\theta) + b1 \cdot sin(\theta) + a2 \cdot cos(2\theta) + b2 \cdot sin(2\theta) + a3 \cdot cos(3\theta) + b3 \cdot sin(3\theta) + a4 \cdot cos(4\theta) + b4 \cdot sin(4\theta) + \dots infinity and beyond] \end{split}$$

First 5 + Maximum Entropy Method

First 5 Intercomparisons

A "Wave Component" Approach

• Measurement errors are frequency and energy dependent.

• A wide range of sea states need to be observed.

Bouy 1 v. Buoy 2 Intercomparison

Avg Mean Wave Direction Difference (Deg)

Avg Directional Spread Difference (Deg)

Bouy 1 v. Buoy 3 Intercomparison

Avg Wave Energy Bias (% Relative to Data Source 1)

Avg Mean Wave Direction Difference (Deg)

Avg Directional Spread Difference (Deg)

3) The Multi-use Platform Challenge

Wave Measurement Methods

- 1) Wave Followers (xyz translation, heave-pitch-roll)
- 2) Corrected Wave Follower (heave-pitch-roll with transfer function)
- 3) Corrected Fixed Platform (subsurface acoustic)
- 4) Fixed Platform (pressure, acoustic)

3) The Multi-use Platform Challenge

Wave Measurement Methods

- 1) Wave Followers (xyz translation, heave-pitch-roll)
 - Corrected Wave Follower (heave-pitch-roll with transfer function)
 - Corrected Fixed Platform (subsurface acoustic)
- 4) Fixed Platform (pressure, acoustic)

3)

3) The Multi-use Platform Challenge

Wave Measurement Methods

- 1) Wave Followers (xyz translation, heave-pitch-roll)
- 2) Corrected Wave Follower (heave-pitch-roll with <u>transfer function</u>) often a complex function of sea-state, mooring system, wind loads etc.
- 3) Corrected Fixed Platform (subsurface acoustic)
- 4) Fixed Platform (pressure, acoustic)

The NDBC Offshore Approach

Waves-only Companion Buoy near the Multi-use Platform

