User requirements identified by Industry

Kevin Ewans Shell International E&P

Overview

- General Requirements
 - Regional coverage
 - Business needs
- Data Requirements
 - Sources of data
 - Parameters
- Research Interests
 - Near-shore/shallow-water
 - Extreme crests

Regions

Business Needs

- Operations
 - Optimise operations
 - Safety
 - Decision support
 - Improved forecasts
 - Performance monitoring
- Planning
 - Seismic Surveys
 - Tow outs
 - Installation of facilities
 - Operation of facilities

- Design
 - Jacket strengths
 - Air gap
 - FPSO moorings
 - Fatigue

Data Sources

- Hindcast data are the usual sources (long length)
 - Important to have events responsible for extremes at location
 - Important to have long continuous (>10 years) for planning statistics
- Measured data
 - Site (project) specific
 - validation of hindcast data
 - More precise quantities
 - Establish associated parameters
 - Hs, Tp, T02, ...
 - Current, wind, for response-based statistics
 - Spectral shape
 - Directionality

Parameters

- Frequency spectrum
 - Spectral shape JONSWAP?
 - Hs, Tp, T02, ...
- Time domain
 - Distributions for H, η
 - Hmax, Tass, $\eta_{
 m max}$

Parameters

 $S(f,\theta) = G(f)H(f,\theta)$

• Direction distribution

Parameters

MLM

MEM

- Frequency-direction
 - Spectral partitioning
 - Not unique
 - too few FCs

Near-shore Interests

- Drivers
 - LNG offloading
 - Platforms
 - Pipeline stabilisation
- Phenomena
 - Wave height & crest elevation
 - Instrumentation platform-based sensors
 - LoWish JIP (also kinematics)
 - IG waves
 - Instrumentation GPS buoy, Doppler Profilers, Pressure Transducer
 - HAWAI and Safe Offload JIPs

Infragravity Waves

- Shallow-water infragravity waves
 - Statistics
 - Operational
 - Design
 - HAWAI
 - Overview of coastal wave models
 - Effect of IG waves on LNG carriers
 - Safe Offload
 - Method to develop data base for operational and design statistics
 - Evaluation of IDSB model with measured data
 - Pressure transducers, AWAC, GPS-buoy (to 100s)

Air Gap Interests

- Crest elevations
 - Design practice 2nd Order only
 - Damage to platforms
 - Measurements
 - Good accurate profile data
 - Problems with platform-based sensors
 - Buoys provide sea state information but not absolute elevation
 - CresT JIP
 - Develop models for realistic extreme waves
 - Develop design methodology for loading and response of floating platforms

CresT – wave data

- CresT
 - Laboratory measurements
 - Probability distributions
 - Long-crested, short-crested, crossing-seas, waves on currents
 - Assessment of buoy performance in extreme waves
 - Analysis of field measurements
 - Identify extreme crest events
 - What are the sea state characteristics
 - Spectral characteristics (bimodal?, narrow-band?, directionality?)
 - Platform-based sensors (radars & lasers)
 - Wave buoys (or hindcasts) for directionality

CresT – Sensor Problems

drop-outs

JCOMM, New York 2nd October 2008

lock-in

sudden offsets

poor resolution

- Performance of wave buoys: Do they submerge and go around?
 - MARIN's Offshore Basin model tests
 - Buoy & mooring details provided by NDBC, Datawell

10 m discus buoy 3 m discus buoy Waverider 0.9 m

- Wave buoys at model scale 1:50
 - Weight distribution and mooring system as realistic as possible

10 m discus buoy

3 m discus buoy $(\sim 6 \text{ cm and } \sim 14 \text{ g})$ $(\sim 2 \text{ cm and } \sim 2 \text{ g})$

Waverider 0.9 m

• Long-crested, Hs = 12m, Tp = 12s, crest 8.2 - 8.4m

• Long-crested, Hs = 12m, Tp = 12s , crest $14 \rightarrow 9.7m$

• Short-crested, Hs = 12m, Tp = 9s – 3m discus & Waverider

• Short-crested, Hs = 12m, Tp = 9s – Waverider

- All three buoys move horizontally with larger waves, mainly in parallel with local direction of wave propagation
- Some evidence of buoys surfing on top of large wave crests (implications for profile)
- 10m buoy submerges mainly in breaking waves
- Little evidence of smaller buoys submerging
- No evidence for buoys skirting around large waves
- Discus 10 m buoy tends to capsize in larger waves
- Evidence that pitch-roll buoys not following slope
- Not easy to keep track of waverider during tests
- Further examination of all video material to be done

Final Points

- Buoys generally provide what's required, but ...
 - Questionable performance in extreme sea states
 - Not suitable for extreme crest measurements
 - Platform-based sensors radar, laser not reliable enough
- Directionality is very important
 - Buoy resolution sufficient for direction parameters
 - Buoy resolution not sufficient for all applications
- Maintenance costs
 - Vessels needed to service buoys
- Reliability needed

Questions?