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- There is clear similarity between the plots of negative spectral slope and the log of the ratio of
n rO u C I O n eve O I I l e n interannual to subannual variance [see plots this pane]. This similarity is not surprising when one e O S
considers the mathematics of spectral slope calculation. We will show that the two quantities are
related by a linear transtormation.

5 o0 o . In general, spectral slope is computed by fitting a linear best-fit line to a plot of log spectral OnC c o
SpeCtraI Slope IS a St&tlSth that deSC“beS the (lensit.}%versus hjg frequenc:ly. Data aIre binned and :\Feragecl before fitting the line into 11!; oider to Spectral Slopes are ComputEd by flttlng a Ilne Vla Ieast-squares

Example 1: spectral slope calculation at properly weight across the range of frequencies- the density of points is much higher in the upper

redness of a time series. It is computed by fitting a | 20N, 120W: B=1.1933 fraquansies [Hesmples 1 & 2 in this pana], and these Freqnenples would otherwiss deminars the regression to the Iog power density spectrum of time series anomalies In

line to the plot of log frequency versus log spectral g s e e 2006 [ampl 1, W oas achut e weigiiog of e specre. b che e o i that e log-frequency space. Power density spectra are estimated via the Thomson
power density. Spectral slope is of particular use in APV R S (d et the o ot b et o sl e (s 21 e e multi-taper method using 3 tapers. To avoid artifacts from the MTM
climatology, as many geophysical time series can be | | . - | e e e g gl B Sl AT GRS s, SIS e
described by power law processes [Wunsch 2003]. i S ﬂ"i‘! | i s o (A7 vl o il il oo i, s o best-fit computation is not dominated by the greater density of high-

A number of publications have suggested broad T ] [ () i e b . ot e s ey s My oo frequency data points, spectra are binned and averaged in ten equally-
Implications of spectral slope for different time series - EE S taking the average of the enclosed spectral density points before taking the log o vield physically spaced log-frequency bins. Intra-bin averages are computed over the log of

meaningful units for the bin averages. We can write interannual and subannual bin averages F; and

[e.g., Blender and Fraedrich 2003, Huybers and P as . — the power spectrum values. This averaging procedure (discussed to in the
- P =logy L1 and P, = logy, | =1, - -

Curry 2006, Koscielny-Bunde et al. 1998]. | 1 N 1’“ _t[ " | | ]’“ | " | N Development section) rather than the log of the average of the bin average
- - . . where p; and pg are spectral density values and np, and npg are e numper ol spectral density - - -

In thIS pOSter’ wWe ShOW fIrSt that the SpeCtraI Slopes ExampIeZ%.NS:pf;éW: Séielé‘lCZa‘]ICéUIatlon . values in interannual and subannual frequency ranges, respectively. The numbers np; and np, also Values rather than the ave rage Of the Iog N Order to retaln d phySICaI Iy

nps

depend only on sample length; np; = % — 1 and np, = % — 4.

12°

for surface air temperature, sea level pressure, and , 1 Letting 3 be spectral slope aud expanding, we have meaningful quantity.

precipitation computed from months to decades oo | Copp mo (%) - tom () Interannual and subannual filtered datasets are computed using a
correspond visually and mathematically to a I R LA ¥ (DY =M= T T Tiom(©) — Soan 2 symmetric four-pole low-pass Butterworth filter with half-power point at
straightforward climatological quantity, namely the i ‘ [ f\,;‘-fﬁii‘-,f | [ e donominator simplfis to 3 logio 3, end the mumerator can be rewritten as the annual cycle. Variances of interannual and subannual regimes are

log ratio of interannual to subannual variances. e R oy | S + 1oy i—_‘_l  The entire expression simplifies to computed by finding the temporal variance at every point of the interannual
Second, we use the method of empirical orthogonal I R T — o ()t (=1 and subannual datasets, respectively.

—3=2 2

functions (EOFs) to identify the dominant modes T omu T EOFs and PCs are computed for the strictly interannual timeseries after
responsible for spatial patterns of spectral slope. et sigual sscouatad for by s st i e g, 0 1oy | S| 1 Gl fo e g o inversely scaling the data at every geographical location by the
Notably, residual patterns after subtracting only a Shelog nf e e af terermnal fermhanonall vaiance By Hneer foasafurmatlies el dgend corresponding standard deviation of subannual temperature. With this
few leading EOFs appear to be dominated by only op the ength of the tme ccric scaling, data variance at each location becomes precisely the local ratio of
latitudinal variability and land-sea contrast, Interannual to subannual variability (whose logarithm we have connected to

articularly for precipitation. Finally, we interpret the local spectral slope).
Iljeadin riynCi aﬁ COI’T? onents as Weﬁ/-known mpodes Data 2m surface air temperature data used in this study are from the NECP-NCAR reanalysis project from 1949-2006 (Kalnay Cross—cporrelationg O)f rincipal components and climate indices are

gp P P et al. 1996). Mean sea level pressure data are also from NCEP-NCAR for the same time period (ibid.). Precipitation data are from P P P

of interannual variability. the NOAA CPC Merged Analysis of Precipitation (CMAP) monthly climatology, 1979-2006 (Xie and Arkin 1997). NINO34 index computed using their linearly detrended values.

data are from Kaplan (1998). SOI index data are the differences in standardized seal-level pressure between Tahiti and Darwin. NAO
index data are from Hurrell. 10D index data are from Sontakke et al. 1996. Indices are truncated to match data set lengths.
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1::;?;‘;:2z;‘fiZ‘gifo:fiﬁz:z:‘z;i:“ef°“'"9M L°“’1”°‘°;§; s e e e o Quantitative connections have been shown between interannual phenomena and the leading
o , . . principal components of a quantity that is directly related to spectral slope. We note in particular
the importance of ENSO and Pacific Decadal Oscillation variability in determining these quantities.
) —— . 1B Spatial variability in spectral slope is drastically reduced by the subtraction of a small number of
N R modes, suggesting that distinguishable dynamical processes and phenomena may be superimposed

e A S S P e T S on a spectral profile which is constant over large regions. Future research will focus on the spectra

of residual data after the removal of dominant modes and on developing statistics to characterize
- nonlinear spectra in a more nuanced way.

2 sea-level pressure with detrended indexes; |max| = 0.88522
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