

Reconstruction of interdecadal variability of air-sea interaction in the Atlantic 1880-2004: links to atmospheric circulation patterns

Sergey Gulev, Konstantin Belyaev, Thomas Jung, Eberhard Ruprecht

Outline:

- Introduction: Uncertainties of surface flux fields : importance of sampling errors
- □ A way to account for sampling uncertainty and to minimize it: using modified FT-distribution (2eWPDF)
- Homogenized 100-yr flux time series in the North Atlantic from VOS (ICOADS)
- □ Surface heat fluxes and the NA variability patterns
- **Conclusions**

The nature of sampling bias in air-sea fluxes

"VOS-like" re-sampling of NWP in order to quantify sampling bias

Gulev et al., 2007a,b J. Climate

Magnitude of sampling error

Sampling errors from different NWP

Sampling affecting trends and interannual variabilioty in surface fluxes

- Changing trend sign in subpolar NA
- No consistency in interannual variability

How to overcome sampling error?

Although it is clear how to quantify sampling error, it is unclear how to minimize it \rightarrow PDF is needed

Modified FT-distribution (2ePDF)

Accounting for different statistical properties of qualitatively similar fluxes

2D-case: Weibull + 2ePDF

SST-T_{air} -2ePDF

New climatology of turbulent fluxes

Minimization of sampling error

Application of 2eWPDF reduces the sampling uncertainty in 2-10 times (7 times on average)

Task:To derive homogeneous time series of
turbulent fluxes in the North Atlantic

What means "homogeneous"?

- Sampling in 1960s+ should be as bad as before WW2
- Impact of parameterizations should be minimized
- Impact of changes in obs. practices should be minimized

The fluxes will not be correct, but variability might be reliable

MC-sub-sampling for *n*=7,15,25,50 per 5°x5° box

Technology of the reconstruction

Parameterizations:

COARE-3.0 (with some simplifications)

Parameters:

- Wind Beaufort only, WMO1100 => to Lindau (1995) scale (not after 1986)
- SST buckets only, no engine intakes (not after 1986)
- Air temperature all
- Relative humidity multi-regression reconstruction

Production – iterative run for every month:

- Ist guess 2eWPDF derivation of monthly statistics for 10° boxes south of 40°N and for gerrymander cells north of 40°N
- 2eWPDF computation for 5°x5° boxes, if the PDF does not fit at 95% level, use the 1st guess
- then repeat the procedure again

Reconstruction of humidity

Sampling of humidity:

no humidity before 1910

humidity
is sparse
before 1950

Woodruff et al. 2005

Reconstruction of relative humidity

Strategy:

Statistical multiregression approach (not a neural network yet) for the decade of 1960s
Deviations from seasonal climatology are considered
Exponential functions + polynomials for Ta, V, SLP
Done locally, for every month and every box

Effect of humidity in latent heat flux

125-yr (1980-2004) climatology

How it is different from the raw averaging?

Differences "2eWPDF-derived minus traditionally averaged" fluxes:

Sampling effect is clearly visible

Winter linear trends

Winter (JFM) EOFs of sensible+latent flux

Link of the leading mode of turbulent fluxes to NAO

30-yr running correlation changes over time considerably

Canonical correlation of the heat fluxes with HadSLP for different periods

Conclusions

2eW-PDF allows for the minimization of sampling biases in turbulent fluxes from 2 to 7 times and Allows for the development of long-term homogeneous flux time series

5-degree 125-yr homogeneous time series of turbulent fluxes (1880-2004) were derived – multi-decadal variability is visible

During 1915/20 – 1950/55 winter surface turbulent fluxes are loosely connected with NAO, being closely related to NAO during the decades before and after this period

Special thanks

Steve Worley, DSS, NCAR, Boulder Scott Woodruff, CDC, NOAA, Boulder

for many years of reliable feedback in ICOADS data management

VOS-based ocean-atmosphere fluxes

Sampling errors from different NWP

Actual values may be different, but when scaled with *std* sapling error is practically equal, when derived from different NWP

Estimating regionally integrated heat flux using 2e PDF

Uncertainty in the integrated sensible+latent flux

VOS-like sampling: $\Delta = 0.67*10^{14} \text{ W}$

2e-PDF - reconstruction: $\Delta = 0.23 \times 10^{14} \text{ W}$

Regional balances: a new domain for integration

2-dimensional double-exponential-Weibull (2eW) PDF

 $P(V \mid \delta T) \cdot P(\delta T) =$ $= F(\alpha_{V}, \beta_{V}, \alpha_{\delta T}, \beta_{\delta T}) =$ $= \frac{\alpha_{V}}{\beta_{V}} \left(\frac{V}{\beta_{V}}\right)^{\alpha_{V}-1} \cdot e^{-\left(\frac{VT}{\beta_{V}}\right)^{\alpha_{V}}} \cdot e^{-\left(\frac{VT}{\beta_{V}}\right)^{\alpha_{V}}} \cdot e^{-\alpha_{T}} \cdot e^{\beta_{T}\delta T} \cdot e^{-\alpha_{T}} \cdot e^{\beta_{T}\delta T}$

SST-Tair -2ePDF

WIND - Weibull PDF

2D-distributions of turbulent fluxes

2D- PDF of sensible flux

Fluxes accumulated over δT , V -classes

Qe

Qh

Estimating regionally integrated heat flux using two dimensional 2e-Weibull PDF

 $\Delta = 0.23 \times 10^{14} \, \text{W}$

50 40 30

 $\Delta = 0.11^{*}10^{14} W$