

Fast data fusion and its role in developing climate quality sea surface temperature data sets from multiple sources.

Julian Hill, Martin Juckes and Paul Fieguth

Science & Technology Facilities Council

Introduction

•Brief introduction to climate change and SST

- •Analysis method
 - why?
 - how?
- Data and Uncertainties
- Conclusions/Further work

Why is SST important

- •Forcing field for atmosphere (or ocean) only models.
- •Weather forecasting parameter
- •Main stay of Climate Record
 - 1850 onwards
- •Can be measured by satellite
 - Long term high resolution data of recent era possible.

Sample satellite data - AATSR

Sample satellite data - AVHRR

Why fill in the gaps?

- Calculate regional averages
 - Trends in climate change.
 - Monitoring
 - Global and local
- Model forcing fields
 - Complete fields required
 - Higher resolution required.

How do we fill in the gaps?

•Kalman Filter

- Forward time direction
 - Forcast step is past time step as well as a time model.
- Reverse time direction
 - Forecast step is future time step with a time model
- Smoother
 - Forecast is both past and future time steps.

Kalman Filter Estimators

SST field: 6th August 2003

IET Target 08: 16/04/08

Sea Surface Temperature (SST): Near surface

sea water temperature CLIMAR III S305 ©STFC 2008

Science & Techgology Facilities Council

SST field: 6th August 2003

IET Target 08: 16/04/08

Sea Surface Temperature (SST): Near surface

sea water temperature CLIMAR III S305 ©STFC 2008

Science & Technology Facilities Council

CLIMAR III S305 ©STFC 2008

Anomaly Map

07-05-08

Anomaly series

Science & Technology Facilities Council

Example SSTFusion uncertainty

How do we quantify method uncertainty?

- •Observations.
 - Uncertain, biased
- •Uncertainty in the filter
 - Calculated, but assumes model is true
 and uncertainties on obs. known
- •Uncertainty in the model
 - Need to use ensembling methods to estimate this

Conclusions

- •Best estimate signal of consistent with in situ
- •Robust uncertainty estimates required.
- •Ensembles of analyses.
 - Parallelize analysis method.
 - Parameter space means large ensemble.
 - Data volumes are huge.

Questions?

CLIMAR III S305 ©STFC 2008

Science & Technology Facilities Council