SOT ANNUAL REPORT FOR 2006

RSMC, EXETER MONITORING REPORTS

(Submitted by Colin Parrett, UK MetOffice)

This document provides information on the data quality monitoring conducted by the Regional Specialized Meteorological Centre (RSMC Exeter) operated by the United Kingdom MetOffice which has now been extended to include data timeliness information.

1. Monitoring the quality and timeliness of VOS observations

- 1.1 The Met Office (RSMC Exeter), as WMO-designated lead centre for monitoring the quality of surface marine meteorological data (observations from ships, buoys and other *in situ* marine platforms), compares observations from individual platforms with the Met Office's global model background 6-hour forecast fields for each variable. Platforms for which the observed values differ from the background by a significant amount are flagged as suspect.
- 1.2 Monthly lists of suspect platforms are sent to the WMO Secretariat (a recent suspect list for ships, fixed buoys and platforms, dated December 2006, is attached at **Annex A** for information). These lists are also exchanged among the 4 lead monitoring centres (Met Office, JMA, NCEP and ECMWF), and other centres, for comparison. Generally there is considerable agreement between the different centres, both in terms of suspect platforms and mean and standard deviation of differences from the background field. Since SOT-III, these monthly lists have been made available via the Met Office web site at:

http://www.metoffice.gov.uk/research/nwp/observations/monitoring/index.html

Examples of the website content together with an extract from the suspect monitoring list for December 2006 are attached at **Annex B**. It will be noted that each suspect ship can now be linked to a QC plot covering the previous month, showing time-series of observation-background values. Two examples are shown: the first plot shows a temporary bias in pressure and the second shows a more persistent but variable bias in relative humidity. (N.B. The plots of pressure currently show the values after any corrections have been applied at the Met Office.)

- 1.3 Initially only mean sea level pressure was monitored, but wind speed, wind direction, sea surface temperature, air temperature and relative humidity have also been added to the information being exchanged on a monthly basis. The current monitoring criteria for the 6 variables are shown in **Annex A**. The meeting is invited to confirm that the monitoring criteria continue to be set at the correct levels.
- 1.4 The Met Office also produces monthly lists of monitoring statistics for the VOS fleets recruited by certain countries. To maintain up to date lists of the VOS fleets for each country concerned, the Met Office now uses WMO Pub 47, which should currently be updated quarterly. However, to ensure that recently recruited VOS vessels are also included, the Met Office also receives monthly fleet updates from a number of countries. These national lists would not be needed if the Pub 47 list could be updated monthly in the future. The Team is therefore invited to consider whether the frequency of Pub 47 procedures should be revised to allow countries to make monthly metadata submissions. This would help to ensure that observational problems can be dealt with in a more prompt manner. (N.B. At the time of writing, the Pub47 list has not been updated for 9 months, between June 2006 and March 2007.)
- 1.5 National focal points are now notified when the latest VOS monthly monitoring reports and suspect lists become available on the Met Office website by means of an email sent by the Met Office to the SOT, VOS and PMO mailing lists, which are maintained by JCOMMOPS. It is important therefore that focal points wishing to receive this monitoring information check that their JCOMMOPS mailing list information is kept up to date. However, the monthly monitoring statistics continue to be emailed directly to major VOS operating countries, and as mentioned in reports to previous SOT meetings, any other national focal points who may wish to receive directly emailed copies of the monthly monitoring lists or 'suspect' ship lists should advise the Met Office of their email address.
- 1.6 Every 6 months more detailed monitoring reports, for all platforms, are also produced and made

available to the WMO Secretariat via the Met Office web site. The statistics relating to suspect VOS operated by specific members are extracted from the report and distributed by the Secretariat to national focal points for the members concerned, under a covering letter requesting that remedial action be taken to correct the problems. Paper copies of the 6-month report are also circulated by the Met Office, but they no longer contain the individual time-series plots for each suspect platform, which made the report very bulky; the general overview and statistics are deemed to be more useful on this time-scale, although the time-series are still available from the Met Office web site.

The most recent version of the biannual report on the quality of marine surface observations can be found at:

http://www.metoffice.gov.uk/research/nwp/observations/monitoring/marine/Biannual/index.html

1.7 Timeliness information for VOS reports received at the Met Office is now also being made available from our web site at

http://www.metoffice.gov.uk/research/nwp/observations/monitoring/marine/TOR/index.html,

where there is a table summarising the data timeliness for each country as well as graphs showing the timeliness of all VOS ships and for the main VOS operating countries. A graphical example for December 2006 data is shown in **Annex C**, where it can be seen from the upper graph that the majority of ship reports were received promptly, with over 40% received within 30 minutes and 90% within 90 minutes of the observation time. The cut-off time for operational NWP global data assimilation is typically 90-150 minutes after the analysis times of 00, 06, 12 and 18 UTC, so at least 90% of global VOS data should be received in time to be assimilated. Timeliness information for individual call-signs on the Pub47 list is also available from the website.

ANNEX A

EXAMPLE OF MONTHLY SUSPECT LIST

MONITORING OF MARINE SURFACE OBSERVATIONS MONTHLY SUSPECT LIST - SHIPS, FIXED BUOYS AND PLATFORMS MONITORING CENTRE: EXETER MONTH: DECEMBER 2006

Monitoring procedures

Period	:One calendar month.					
Data monitored	:Reports from each unique identifier for ships, fixed buoys and platforms.					
Standard of comparison	:Background field from Exeter global model.					
Observation times	:All hours					
Elements monitored	:Mean sea level pressure (hPa). :Wind speed (ms ⁻¹).					
	:Wind direction (degrees).					
	:Air temperature (°C).					
	:Relative Humidity (%). :Sea surface temperature (°C).					
Parameters monitored	Sea Sallade Sempeladale (S).					
NOBS	:Number of observations received, excluding duplicates.					
%GE %REJ	:Percentage of observations with gross errors.:Percentage of observations flagged, excluding					
\$KEO	those with gross errors.					
SD	:SD of difference of observations from background					
values,	excluding those with gross errors.					
BIAS	:Mean difference of observations from					
	background values, excluding those with gross errors					
	(N.B. a positive bias indicates the wind observation is veered to the background).					
RMS	:Root Mean Square difference of observations from					
	background values, excluding those with gross errors.					
GROSS ERROR LIMIT	:15 hPa (pressure)					
	:25 ms ⁻¹ (vector wind)					
	:15 °C (air temperature) :50% (relative humidity)					
	:10 °C (sea surface temperature)					
SELECTION CRITERIA	:NOBS >= 20 , and one or more of the following:					
	1.Bias >= 4 hPa (pressure)					
	>= 5 ms ⁻¹ (wind speed)					
	>= 30 degrees (direction) >= $4 ^{\circ}C$ (air temperature)					
	>= 15% (relative humidity)					
	>= 3 °C (SST)					
	2.SD >= 6 hPa (pressure)					

 ${\tt N.B.}$ Observations of wind direction are only included in the wind direction statistics if the observed OR background wind speed > 5 ms⁻¹

>=

>=

>=

>=

80 degrees (direction)

25%

5 °C

25

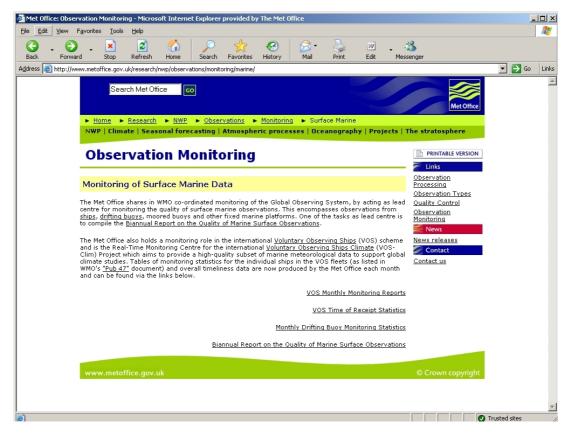
6 °C (air temperature)

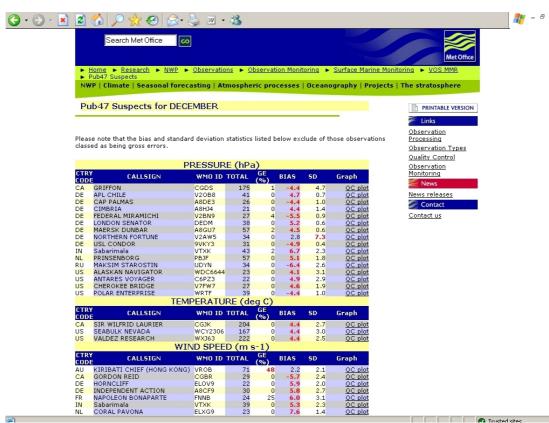
(SST)

(relative humidity)

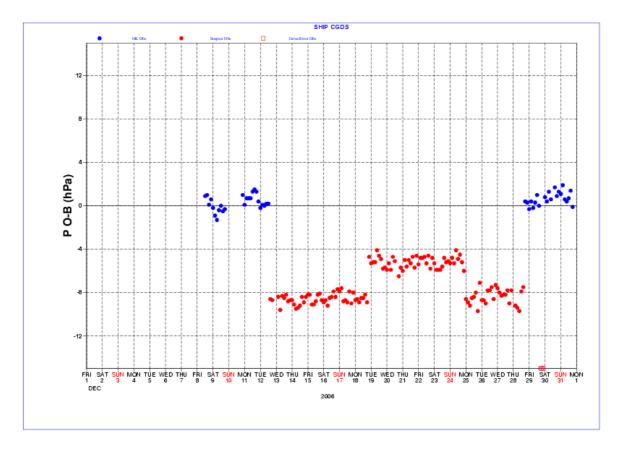
IDENTIFIER	ELEM	NOBS	%GE	%REJ	SD	BIAS	RMS
0221	P D	0.0	-			-4.6 -5.1	

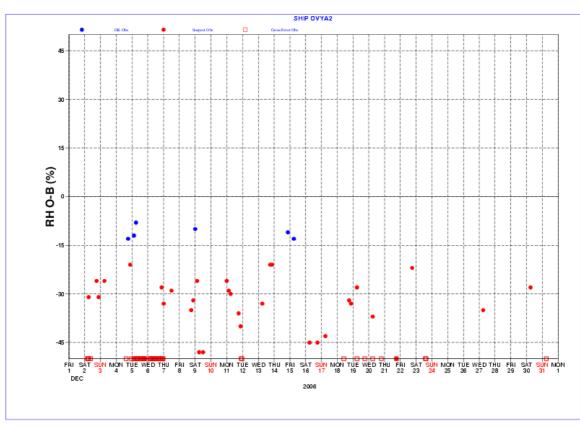
3.PGE

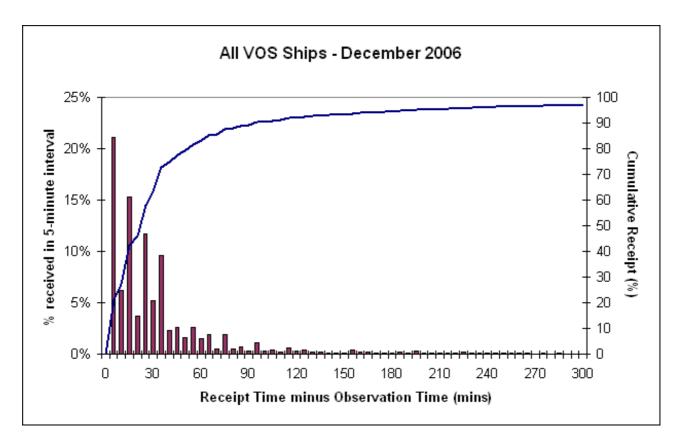

p. 4

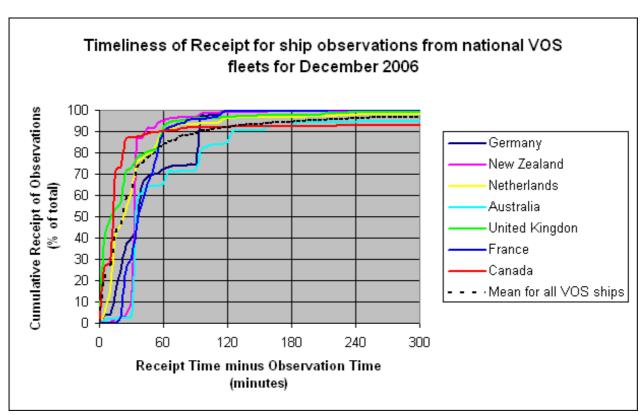

A8DE3	P	26	0	100	1.4	-4.5	4.7
A8GU7	P	58	2	2	0.7	4.4	4.4
A8HJ4	P	21	0	76	1.7	4.5	4.8
C6FZ6	P	33	0	0	1.2	8.6	8.7
		22	0		3.5	4.8	6.0
C6PZ3	P			18			
CGDS	P	175	1	100	3.8	-5.1	6.3
DEDM	P	38	0	66	0.6	4.9	4.9
KS049	P	219	0	0	1.1	-4.2	4.4
RB0 15	_	217	O	O	± • ±	1.2	1.1
LADC2	P	28	36	86	7.2	-6.4	9.6
MLTH5	P	27	0	70	3.4	-4.7	5.8
PBJF	P	57	0	65	2.1	4.9	5.3
					2.1	1.7	3.3
TEST	P	218	100	100			
TESTCA7	P	131	0	100	0.7	-11.7	11.7
UCFT	P	50	2	12	2.3	-4.3	4.9
UDYN	P	34	0	85	2.7	-6.4	7.0
UGOU	P	57	0	47	2.9	-4.7	5.5
UICO	P	30	20	53	6.1	3.0	6.8
V2AW5	P	34	0	79	9.8	2.4	10.1
TTODMO	ח	27	4	4	1 1	-5.7	5.8
V2BN9	P				1.1		
V2OB8	P	41	0	41	0.9	4.3	4.4
V7BX3	P	20	0	20	2.2	4.2	4.7
V7FW7	P	27	0	44	2.7	4.3	5.0
VTXK	P	43	2	84	2.7	6.6	7.1
WMLG	P	28	0	100	6.0	3.1	6.8
WRTF	P	39	0	49	1.1	-4.6	4.7
***************************************	-	3,5	Ŭ	10		1.0	1.,
TD-1100-TD-	DT D14	110DG	0.00	0.00.0	G.D.	D.T.3.0	DMG
IDENTIFIER	ELEM	NOBS	%GE	%REJ	SD	BIAS	RMS
4XGU	SPEED	43	2	67	3.5	5.1	6.2
62108	SPEED	727	21	71	3.9	-9.6	10.3
A8CF9	SPEED	30	10	100	4.8	5.4	7.2
C6FN4	SPEED	28	0	4	2.7	5.1	5.8
ELOV9	SPEED	22	9	50	4.4	6.1	7.5
	21 222			3 0		0.1	, , ,
DT 1/C0	CDEED	2.2	^	1 7	2 2	0 -	0 1
ELXG9	SPEED	23	0	17	3.3	8.5	9.1
FNNB	SPEED	32	53	69	4.9	2.3	5.4
OUSE6	SPEED	22					
		22	0	14	2.9	5.2	6.0
OMEII2			0 35			5.2 4.5	6.0 5.8
OWFU2	SPEED	23	35	100	3.6	4.5	5.8
OWFU2 OXRA6						4.5	
	SPEED	23 33	35 3	100 9	3.6 2.3	4.5 5.1	5.8 5.6
	SPEED	23	35	100	3.6	4.5	5.8
OXRA6 PBHU	SPEED SPEED SPEED	23 33 31	35 3 39	100 9 52	3.6 2.3 4.1	4.5 5.1 6.4	5.8 5.6 7.6
OXRA6 PBHU SCKM	SPEED SPEED SPEED SPEED	23 33 31 21	35 3 39 0	100 9 52 43	3.6 2.3 4.1 3.7	4.5 5.1 6.4 6.8	5.8 5.6 7.6 7.7
OXRA6 PBHU SCKM VROB	SPEED SPEED SPEED SPEED SPEED	23 33 31 21 110	35 3 39 0 40	100 9 52 43 62	3.6 2.3 4.1 3.7 4.8	4.5 5.1 6.4 6.8 2.9	5.8 5.6 7.6 7.7 5.6
OXRA6 PBHU SCKM VROB VTXK	SPEED SPEED SPEED SPEED SPEED SPEED	23 33 31 21 110 43	35 3 39 0 40 5	100 9 52 43 62 65	3.6 2.3 4.1 3.7 4.8 4.4	4.5 5.1 6.4 6.8 2.9 5.1	5.8 5.6 7.6 7.7 5.6 6.7
OXRA6 PBHU SCKM VROB	SPEED SPEED SPEED SPEED SPEED	23 33 31 21 110	35 3 39 0 40	100 9 52 43 62	3.6 2.3 4.1 3.7 4.8	4.5 5.1 6.4 6.8 2.9 5.1	5.8 5.6 7.6 7.7 5.6
OXRA6 PBHU SCKM VROB VTXK	SPEED SPEED SPEED SPEED SPEED SPEED	23 33 31 21 110 43	35 3 39 0 40 5	100 9 52 43 62 65	3.6 2.3 4.1 3.7 4.8 4.4	4.5 5.1 6.4 6.8 2.9 5.1	5.8 5.6 7.6 7.7 5.6 6.7
OXRA6 PBHU SCKM VROB VTXK	SPEED SPEED SPEED SPEED SPEED SPEED	23 33 31 21 110 43	35 3 39 0 40 5	100 9 52 43 62 65	3.6 2.3 4.1 3.7 4.8 4.4	4.5 5.1 6.4 6.8 2.9 5.1	5.8 5.6 7.6 7.7 5.6 6.7
OXRA6 PBHU SCKM VROB VTXK WQZ9670	SPEED SPEED SPEED SPEED SPEED SPEED SPEED	23 33 31 21 110 43 34	35 3 39 0 40 5	100 9 52 43 62 65 0	3.6 2.3 4.1 3.7 4.8 4.4 2.9	4.5 5.1 6.4 6.8 2.9 5.1 5.2	5.8 5.6 7.6 7.7 5.6 6.7 6.0
OXRA6 PBHU SCKM VROB VTXK	SPEED SPEED SPEED SPEED SPEED SPEED SPEED	23 33 31 21 110 43	35 3 39 0 40 5	100 9 52 43 62 65 0	3.6 2.3 4.1 3.7 4.8 4.4	4.5 5.1 6.4 6.8 2.9 5.1 5.2	5.8 5.6 7.6 7.7 5.6 6.7 6.0
OXRA6 PBHU SCKM VROB VTXK WQZ9670	SPEED SPEED SPEED SPEED SPEED SPEED SPEED	23 33 31 21 110 43 34 NOBS	35 3 39 0 40 5 0	100 9 52 43 62 65 0	3.6 2.3 4.1 3.7 4.8 4.4 2.9	4.5 5.1 6.4 6.8 2.9 5.1 5.2	5.8 5.6 7.6 7.7 5.6 6.7 6.0
OXRA6 PBHU SCKM VROB VTXK WQZ9670	SPEED SPEED SPEED SPEED SPEED SPEED SPEED	23 33 31 21 110 43 34	35 3 39 0 40 5	100 9 52 43 62 65 0	3.6 2.3 4.1 3.7 4.8 4.4 2.9	4.5 5.1 6.4 6.8 2.9 5.1 5.2 BIAS	5.8 5.6 7.6 7.7 5.6 6.7 6.0
OXRA6 PBHU SCKM VROB VTXK WQZ9670 IDENTIFIER 23173	SPEED SPEED SPEED SPEED SPEED SPEED SPEED	23 33 31 21 110 43 34 NOBS	35 3 39 0 40 5 0	100 9 52 43 62 65 0	3.6 2.3 4.1 3.7 4.8 4.4 2.9	4.5 5.1 6.4 6.8 2.9 5.1 5.2 BIAS	5.8 5.6 7.6 7.7 5.6 6.7 6.0 RMS
OXRA6 PBHU SCKM VROB VTXK WQZ9670 IDENTIFIER 23173 42362	SPEED SPEED SPEED SPEED SPEED SPEED SPEED DIRN. DIRN.	23 33 31 21 110 43 34 NOBS	35 3 39 0 40 5 0	100 9 52 43 62 65 0 %REJ	3.6 2.3 4.1 3.7 4.8 4.4 2.9 SD 63.5 32.8	4.5 5.1 6.4 6.8 2.9 5.1 5.2 BIAS 141.3 -37.0	5.8 5.6 7.6 7.7 5.6 6.7 6.0 RMS 154.9 49.5
OXRA6 PBHU SCKM VROB VTXK WQZ9670 IDENTIFIER 23173 42362 53057	SPEED SPEED SPEED SPEED SPEED SPEED DIRN. DIRN. DIRN.	23 33 31 21 110 43 34 NOBS 55 1194 53	35 3 39 0 40 5 0 %GE	100 9 52 43 62 65 0 %REJ	3.6 2.3 4.1 3.7 4.8 4.4 2.9 SD 63.5 32.8 17.5	4.5 5.1 6.4 6.8 2.9 5.1 5.2 BIAS 141.3 -37.0 *****	5.8 5.6 7.6 7.7 5.6 6.7 6.0 RMS 154.9 49.5 126.5
OXRA6 PBHU SCKM VROB VTXK WQZ9670 IDENTIFIER 23173 42362 53057 62108	SPEED SPEED SPEED SPEED SPEED SPEED DIRN. DIRN. DIRN. DIRN.	23 33 31 21 110 43 34 NOBS 55 1194 53 235	35 3 39 0 40 5 0 %GE 0 0 66	100 9 52 43 62 65 0 %REJ 0 0	3.6 2.3 4.1 3.7 4.8 4.4 2.9 SD 63.5 32.8 17.5 103.6	4.5 5.1 6.4 6.8 2.9 5.1 5.2 BIAS 141.3 -37.0 *****	5.8 5.6 7.6 7.7 5.6 6.7 6.0 RMS 154.9 49.5 126.5 106.0
OXRA6 PBHU SCKM VROB VTXK WQZ9670 IDENTIFIER 23173 42362 53057	SPEED SPEED SPEED SPEED SPEED SPEED DIRN. DIRN. DIRN.	23 33 31 21 110 43 34 NOBS 55 1194 53	35 3 39 0 40 5 0 %GE	100 9 52 43 62 65 0 %REJ	3.6 2.3 4.1 3.7 4.8 4.4 2.9 SD 63.5 32.8 17.5	4.5 5.1 6.4 6.8 2.9 5.1 5.2 BIAS 141.3 -37.0 *****	5.8 5.6 7.6 7.7 5.6 6.7 6.0 RMS 154.9 49.5 126.5
OXRA6 PBHU SCKM VROB VTXK WQZ9670 IDENTIFIER 23173 42362 53057 62108	SPEED SPEED SPEED SPEED SPEED SPEED DIRN. DIRN. DIRN. DIRN.	23 33 31 21 110 43 34 NOBS 55 1194 53 235	35 3 39 0 40 5 0 %GE 0 0 66	100 9 52 43 62 65 0 %REJ 0 0	3.6 2.3 4.1 3.7 4.8 4.4 2.9 SD 63.5 32.8 17.5 103.6	4.5 5.1 6.4 6.8 2.9 5.1 5.2 BIAS 141.3 -37.0 *****	5.8 5.6 7.6 7.7 5.6 6.7 6.0 RMS 154.9 49.5 126.5 106.0
OXRA6 PBHU SCKM VROB VTXK WQZ9670 IDENTIFIER 23173 42362 53057 62108 62116	SPEED SPEED SPEED SPEED SPEED SPEED DIRN. DIRN. DIRN. DIRN. DIRN.	23 33 31 21 110 43 34 NOBS 55 1194 53 235 477	35 3 39 0 40 5 0 %GE 0 0 66 0	100 9 52 43 62 65 0 8REJ 0 0 0	3.6 2.3 4.1 3.7 4.8 4.4 2.9 SD 63.5 32.8 17.5 103.6 12.1	4.5 5.1 6.4 6.8 2.9 5.1 5.2 BIAS 141.3 -37.0 *****	5.8 5.6 7.6 7.7 5.6 6.7 6.0 RMS 154.9 49.5 126.5 106.0 37.3
OXRA6 PBHU SCKM VROB VTXK WQZ9670 IDENTIFIER 23173 42362 53057 62108 62116 DCUJ2	SPEED SPEED SPEED SPEED SPEED SPEED DIRN. DIRN. DIRN. DIRN. DIRN.	23 33 31 21 110 43 34 NOBS 55 1194 53 235 477	35 3 39 0 40 5 0 %GE 0 66 0	100 9 52 43 62 65 0 8REJ 0 0 0	3.6 2.3 4.1 3.7 4.8 4.4 2.9 SD 63.5 32.8 17.5 103.6 12.1 95.6	4.5 5.1 6.4 6.8 2.9 5.1 5.2 BIAS 141.3 -37.0 ***** -22.1 35.3	5.8 5.6 7.6 7.7 5.6 6.7 6.0 RMS 154.9 49.5 126.5 106.0 37.3
OXRA6 PBHU SCKM VROB VTXK WQZ9670 IDENTIFIER 23173 42362 53057 62108 62116 DCUJ2 FNNB	SPEED SPEED SPEED SPEED SPEED SPEED DIRN. DIRN. DIRN. DIRN. DIRN. DIRN. DIRN.	23 33 31 21 110 43 34 NOBS 55 1194 53 235 477	35 3 39 0 40 5 0 %GE 0 66 0	100 9 52 43 62 65 0 8REJ 0 0 0 0	3.6 2.3 4.1 3.7 4.8 4.4 2.9 SD 63.5 32.8 17.5 103.6 12.1 95.6 46.7	4.5 5.1 6.4 6.8 2.9 5.1 5.2 BIAS 141.3 -37.0 ***** -22.1 35.3	5.8 5.6 7.6 7.7 5.6 6.7 6.0 RMS 154.9 49.5 126.5 106.0 37.3 96.0 53.2
OXRA6 PBHU SCKM VROB VTXK WQZ9670 IDENTIFIER 23173 42362 53057 62108 62116 DCUJ2	SPEED SPEED SPEED SPEED SPEED SPEED DIRN. DIRN. DIRN. DIRN. DIRN. DIRN. DIRN. DIRN.	23 33 31 21 110 43 34 NOBS 55 1194 53 235 477	35 3 39 0 40 5 0 %GE 0 66 0 68 36	100 9 52 43 62 65 0 8REJ 0 0 0 0	3.6 2.3 4.1 3.7 4.8 4.4 2.9 SD 63.5 32.8 17.5 103.6 12.1 95.6 46.7 16.4	4.5 5.1 6.4 6.8 2.9 5.1 5.2 BIAS 141.3 -37.0 ***** -22.1 35.3	5.8 5.6 7.6 7.7 5.6 6.7 6.0 RMS 154.9 49.5 126.5 106.0 37.3 96.0 53.2 16.9
OXRA6 PBHU SCKM VROB VTXK WQZ9670 IDENTIFIER 23173 42362 53057 62108 62116 DCUJ2 FNNB	SPEED SPEED SPEED SPEED SPEED SPEED DIRN. DIRN. DIRN. DIRN. DIRN. DIRN. DIRN.	23 33 31 21 110 43 34 NOBS 55 1194 53 235 477	35 3 39 0 40 5 0 %GE 0 66 0	100 9 52 43 62 65 0 8REJ 0 0 0 0	3.6 2.3 4.1 3.7 4.8 4.4 2.9 SD 63.5 32.8 17.5 103.6 12.1 95.6 46.7	4.5 5.1 6.4 6.8 2.9 5.1 5.2 BIAS 141.3 -37.0 ***** -22.1 35.3	5.8 5.6 7.6 7.7 5.6 6.7 6.0 RMS 154.9 49.5 126.5 106.0 37.3 96.0 53.2
OXRA6 PBHU SCKM VROB VTXK WQZ9670 IDENTIFIER 23173 42362 53057 62108 62116 DCUJ2 FNNB OWFU2 PBHU	SPEED SPEED SPEED SPEED SPEED SPEED DIRN.	23 33 31 21 110 43 34 NOBS 55 1194 53 235 477 33 25 22 30	35 3 39 0 40 5 0 %GE 0 66 0 68 36	100 9 52 43 62 65 0 8REJ 0 0 0 0 0	3.6 2.3 4.1 3.7 4.8 4.4 2.9 SD 63.5 32.8 17.5 103.6 12.1 95.6 46.7 16.4 36.4	4.5 5.1 6.4 6.8 2.9 5.1 5.2 BIAS 141.3 -37.0 ***** -22.1 35.3 9.1 25.6 4.3 0.1	5.8 5.6 7.6 7.7 5.6 6.7 6.0 RMS 154.9 49.5 126.5 106.0 37.3 96.0 53.2 16.9 36.4
OXRA6 PBHU SCKM VROB VTXK WQZ9670 IDENTIFIER 23173 42362 53057 62108 62116 DCUJ2 FNNB OWFU2	SPEED SPEED SPEED SPEED SPEED SPEED DIRN. DIRN. DIRN. DIRN. DIRN. DIRN. DIRN. DIRN.	23 33 31 21 110 43 34 NOBS 55 1194 53 235 477	35 39 040 50 %GE 00 66 06 68 36 40	100 9 52 43 62 65 0 8REJ 0 0 0 0	3.6 2.3 4.1 3.7 4.8 4.4 2.9 SD 63.5 32.8 17.5 103.6 12.1 95.6 46.7 16.4	4.5 5.1 6.4 6.8 2.9 5.1 5.2 BIAS 141.3 -37.0 ***** -22.1 35.3	5.8 5.6 7.6 7.7 5.6 6.7 6.0 RMS 154.9 49.5 126.5 106.0 37.3 96.0 53.2 16.9
OXRA6 PBHU SCKM VROB VTXK WQZ9670 IDENTIFIER 23173 42362 53057 62108 62116 DCUJ2 FNNB OWFU2 PBHU UCUC	SPEED SPEED SPEED SPEED SPEED SPEED ELEM DIRN.	23 33 31 21 110 43 34 NOBS 55 1194 53 235 477 33 25 22 30 42	35 39 040 50 %GE 00 66 0 68 36 40 0	100 9 52 43 62 65 0 8REJ 0 0 0 0 0	3.6 2.3 4.1 3.7 4.8 4.4 2.9 SD 63.5 32.8 17.5 103.6 12.1 95.6 46.7 16.4 36.4 25.2	4.5 5.1 6.4 6.8 2.9 5.1 5.2 BIAS 141.3 -37.0 ***** -22.1 35.3 9.1 25.6 4.3 0.1 -31.7	5.8 5.6 7.6 7.7 5.6 6.7 6.0 RMS 154.9 49.5 126.5 106.0 37.3 96.0 53.2 16.9 36.4 40.5
OXRA6 PBHU SCKM VROB VTXK WQZ9670 IDENTIFIER 23173 42362 53057 62108 62116 DCUJ2 FNNB OWFU2 PBHU UCUC UDYN	SPEED SPEED SPEED SPEED SPEED SPEED ELEM DIRN.	23 33 31 21 110 43 34 NOBS 55 1194 53 235 477 33 25 22 30 42	35 39 040 50 %GE 00 66 0 68 36 40 0	100 9 52 43 62 65 0 8REJ 0 0 0 0 0 0	3.6 2.3 4.1 3.7 4.8 4.4 2.9 SD 63.5 32.8 17.5 103.6 12.1 95.6 46.7 16.4 36.4 25.2	4.5 5.1 6.4 6.8 2.9 5.1 5.2 BIAS 141.3 -37.0 ***** -22.1 35.3 9.1 25.6 4.3 0.1 -31.7	5.8 5.6 7.6 7.7 5.6 6.7 6.0 RMS 154.9 49.5 126.5 106.0 37.3 96.0 53.2 16.9 36.4 40.5
OXRA6 PBHU SCKM VROB VTXK WQZ9670 IDENTIFIER 23173 42362 53057 62108 62116 DCUJ2 FNNB OWFU2 PBHU UCUC	SPEED SPEED SPEED SPEED SPEED SPEED ELEM DIRN.	23 33 31 21 110 43 34 NOBS 55 1194 53 235 477 33 25 22 30 42	35 39 040 50 %GE 00 66 0 68 36 40 0	100 9 52 43 62 65 0 8REJ 0 0 0 0 0	3.6 2.3 4.1 3.7 4.8 4.4 2.9 SD 63.5 32.8 17.5 103.6 12.1 95.6 46.7 16.4 36.4 25.2	4.5 5.1 6.4 6.8 2.9 5.1 5.2 BIAS 141.3 -37.0 ***** -22.1 35.3 9.1 25.6 4.3 0.1 -31.7	5.8 5.6 7.6 7.7 5.6 6.7 6.0 RMS 154.9 49.5 126.5 106.0 37.3 96.0 53.2 16.9 36.4 40.5

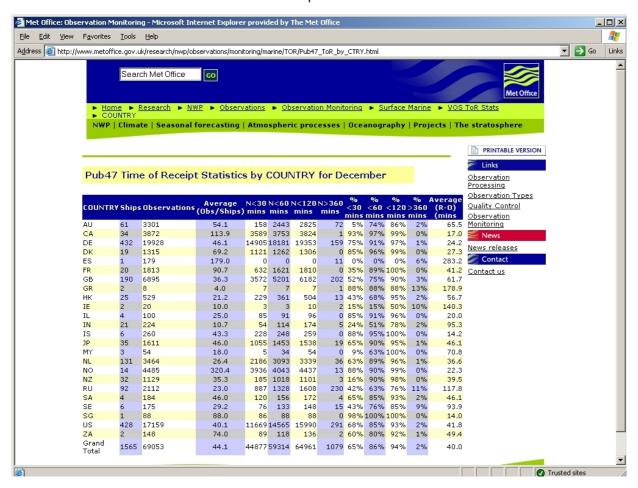
VRY09 VRY09	DIRN. DIRN.	52 34	0 0	0 0	83.1 91.1	-30.2 5.6	88.4 91.2
IDENTIFIER	ELEM	NOBS	%GE	%REJ	SD	BIAS	RMS
44140 46088 46131 46146 CGJK	T T T T	707 1441 672 720 210	0 0 0 0	100 100 100 100 100	2.0 1.8 1.4 1.6 2.9	5.4 5.9 6.2 5.8 4.3	5.7 6.2 6.3 6.0 5.1
TEST UCFT WCY2306 WXJ63	T T T	218 50 170 224	100 0 0 0	100 100 100 100	1.7 2.9 2.6	-4.6 4.4 4.4	5.0 5.3 5.1
IDENTIFIER	ELEM	NOBS	%GE	%REJ	SD	BIAS	RMS
62301 A81F4 A81Y9 DACF ELWX5	RH RH RH RH RH	709 32 23 485 189	13 0 0 9 40	100 100 100 100 100	18.2 10.4 13.0 11.5 18.2	-15.7 19.1 19.0 -25.0 -25.8	24.1 21.7 23.1 27.5 31.6
ELXT8 LADY5 MSHE2 OVOT2 OVYA2	RH RH RH RH RH	44 32 57 104 44	0 0 0 1 9	100 100 100 100 100	14.4 13.2 8.3 8.7 10.2	17.4 16.4 18.2 16.6 -28.5	22.6 21.0 20.1 18.8 30.3
PHET PMSA VQGQ4 VRVN6	RH RH RH RH	118 54 45 26	3 0 0 0	100 100 100 100	13.8 10.2 12.2 8.8	-17.0 15.3 17.5 20.2	21.9 18.4 21.3 22.0
IDENTIFIER	ELEM	NOBS	%GE	%REJ	SD	BIAS	RMS
41035 41112 42007 44140 C6IO9	SST SST SST SST SST	1086 1096 549 523 34	0 0 0 0	89 90 93 88 97	0.9 0.6 0.7 1.1 2.6	-4.1 -3.5 -4.0 -3.0	4.2 3.5 4.1 3.2 4.1
C6UG4 DGGV DNDD LADC2 TEST	SST SST SST SST SST	31 40 34 29 216	0 0 0 0 100	100 5 100 55 100	2.0 0.7 0.6 5.1	-3.3 3.0 3.3 -1.3	3.9 3.1 3.4 5.2
V2AW5 V7BW8 V7IP9 VRBH8 WAAH	SST SST SST SST SST	26 37 45 23 67	4 0 0 4 0	100 100 100 30 100	2.9 0.8 1.4 1.6		6.4 4.4 7.1 3.4 3.3
WCY2306 WDB9444 WZJD	SST SST SST	115 29 46	0 0 0	84 45 100	0.6 2.4 1.9	3.3	3.9 4.1 4.4


ANNEX B


EXAMPLES OF CONTENT OF MET OFFICE OBSERVATION MONITORING WEB PAGES


Examples of QC Plots – for Pressure (top) and Humidity (below)





ANNEX C
TIMELINESS OF VOS OBSERVATIONS RECEIVED AT THE MET OFFICE (UK)
DEC 2006

p. 8

