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I. INTRODUCTION

Second order surface wave theory is an important tool
of modern engineering, often used for computing the in-
fluence of nonlinear effects on simulations of random, di-
rectionally spread wave trains (Forristall [2000]). Im-
plicit in the method is that the second-order Stokes cor-
rections must remain small. While this approach works
well for many cases, it is clear that Stokes harmonics of
much higher order can occur, particularly in shallow wa-
ter where linear superposition is no longer tenable [Smith
and Vincent, 1995]. The focus of the present paper is to
address how Stokes corrections can be implemented to

all orders in the theory, in the shallow water approxima-
tion, by applying the method of the inverse scattering

transform (IST).
To this end it is also important to theoretically ad-

dress computation of directional spectra, to arbitrary or-
der in nonlinearity, for shallow water waves. We begin
by considering second-order water wave theory (Sharma
and Dean, [1989], Longuet-Higgins [1963]) from the point
of view of the IST in the shallow water limit. We dis-
cuss shallow water theory from the point of view of the
Korteweg-deVries (KdV) equation (which describes uni-
directional waves) and the Kadomtsev-Petviashvili (KP)
equation (which includes directional spreading, albeit for
relatively small angles). By comparing the IST formula-
tion for shallow water theory with second order theory
we find an expression for the nonlinear directional spec-

trum (Riemann matrix) in terms of wave number and/or
frequency and direction. These results allow us to com-
pute to all orders the nonlinear effects inherent in shallow
water, nonlinear wave dynamics.

This new approach, based upon IST, has several fea-
tures, some of which we now summarize. The method:
(1) Connects second order theory with the infinite-order,
nonlinear Fourier analysis formulation for the KdV and
KP equations and higher order extensions. (2) Allows
fully nonlinear directional spectra to be computed from
data. (3) Computes nonlinear directional spectra, not
just in terms of ordinary sine waves, but also in terms
of solitons and Stokes waves, i.e. the natural nonlinear
basis functions of the IST. (4) Allows previously devel-
oped statistical approaches for second order theory to be
applied to inverse scattering formulations. Extension to

third order is straightforward, for example.
A brief outline of the paper is as follows. We give a dis-

cussion of shallow water theory in Section II. An overview
of the inverse scattering transform for KdV and KP is
provided in Section IIIA, B. Then in Section IIIC we
discuss the truncation of the IST formulation to second
order. Finally in Section IV we discuss details for the
computation of nonlinear, directional wave trains from
directional spectra. Then in Section V we give a nu-
merical example of the approach. In the summary we
discuss the range of applicability of second order theory
by comparing to the IST. We use the Ursell number to
the characterize the nonlinearity of the waves.

II. SECOND ORDER THEORY

Second order wave theory (Sharma and Dean [1979];
Forristall [2000]) has the form

η(x, y, t) =
N
∑

n=1
an cosXn+

+ 1
4

N
∑

j=1

N
∑

k=1

ajakK+
ij cos (Xj + Xk)+

+ 1
4

N
∑

j=1

N
∑

k=1

ajakK−
ij cos (Xj − Xk)

(1)

where

Xn = kn · x− ωnt + φn (2)

Here the kn = [knx, kny] = [kn, ln] are the wave number
vectors in the horizontal plane, x = [x, y] is the position
vector, the ωn are the frequencies and the φn are the
phases.

The single sum on the right hand side of (1) is the usual
linear Fourier series which contains directional spread-
ing, while the other two terms are the nonlinear, Stokes-
like corrections to second order. Two Stokes corrections
are made, one is related to the sums of wave numbers
(Xj + Xk) and frequencies and the second is related to
the differences (Xj − Xk).
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The coefficients in the Stokes second order corrections
have the form:

K−
ij =

[

D−
ij − (ki · kj + RiRj)

]

(RiRj)
−1/2 + Ri + Rj

(3)

K+
ij =

[

D+
ij − (ki · kj − RiRj)

]

(RiRj)
−1/2

+ Ri + Rj

(4)

D−
ij =

(
√

Ri−
√

Rj)[
√

Rj(k2
i−R2

i )−
√

Ri(k2
j−R2

j)]

(
√

Ri−
√

Rj)
2−k−

ij
tanh k−

ij
h

+

+
2(

√
Ri−

√
Rj)

2
(ki·kj+RiRj)

(
√

Ri−
√

Rj)
2−k−

ij
tanh k−

ij
h

(5)

D+
ij =

(
√

Ri+
√

Rj)[
√

Ri(k2
i−R2

i )+
√

Rj(k2
j−R2

i )]
(
√

Ri+
√

Rj)
2−k+

ij
tanhk+

ij
h

+

+
2(

√
Ri+

√
Rj)

2
(ki·kj+RiRj)

(
√

Ri+
√

Rj)
2−k+

ij
tanh k+

ij
h

(6)

where

k−
ij = |ki − kj | (7)

k+
ij = |ki + kj | (8)

Ri = |ki| tanh (|ki|h) = ω2
i /g (9)

Aside from a minor typo the above theory reduces to that
of Longuet-Higgins [1963] for infinite water depth.

III. THE INVERSE SCATTERING

TRANSFORM

In shallow water it is often convenient to address
the physics in terms of the Kortweg-deVries equation
(KdV, unidirectional propagation) and the Kadomtsev-
Petviashvili equation (KP, which contains directional
spreading). The cases are distinct enough to con-
sider separately, although the KdV equation is contained
within the KP formulation when there is no directional
spreading, i.e. when the y component wave number
ln = 0. We first discuss the case for KdV.

A. The KdV Equation

The KdV equation (Korteweg and deVries [1895]) de-
scribes unidirectional wave propagation in shallow water.
It is given by

ηt + coηx + αηηx + βηxxx = 0 (10)

where co =
√

gh, α = 3co/2h, β = coh
2/6 and h is

the water depth. We assume periodic boundary condi-
tions, η(x, t) = η(x + L, t). The non-singular (physical)

solutions of KdV are written in terms of multidimen-
sional Fourier series (Riemann theta functions) given by
(Dubrovin and Novikov [1976]; Its and Matveev [1976]):

η(x, t) =
2

λ
∂xx ln θ(x, t) =

2

λ

(

θθxx − θ2
x

θ2

)

(11)

where λ = α/6β = 3/2h3. Here the Riemann theta func-
tion has the form:

θ(x, t) =
∞
∑

m1=−∞

∞
∑

m2=−∞
...

∞
∑

mN=−∞

×e
− 1

2

N
P

j=1

N
P

k=1

mjmkBjk

e
i

N
P

j=1

mjkjx−i
N
P

j=1

mjωjt+i
N
P

j=1

mjφj

(12)
The Bjk are the elements of the Riemann matrix, kj are
the IST wave numbers, ωj are the frequencies and φj

are the phases in the IST spectrum. By abuse of nota-
tion the IST parameters ωn, φn are not those of linear
Fourier analysis. Rules for the determination of these
parameters are discussed in Section IV. Note that the
Riemann matrix plays the role of a nonlinear spectrum;
it reduces to the linear Fourier transform in the small-
amplitude limit, i.e. when the off-diagonal terms, Bmn,
become small relative to the diagonal terms Bnn.

Due to the periodic boundary conditions we have the
following rule for computing the wave numbers: kj =
2πj/L, where L is the period of the wave train; this coin-
cides with linear Fourier analysis. The number of nested
sums in the theta function, N , provides the number of
degrees of freedom or components in the IST spectrum.
Because of the structure of the theta function the multi-
ple (nested) summations occur over all possible sums and

differences of the wave numbers and frequencies. Thus we
say that the solution to the KdV equation is computable
to all orders.

As just mentioned, the spectrum for the KdV equa-
tion is a matrix (the Riemann matrix) rather than a
vector (as for the linear Fourier transform). The ele-
ments of the diagonal of the Riemann matrix correspond
to cnoidal waves (Wiegel [1964]), which are the N nonlin-
ear modes of the KdV equation (Osborne [1995]); these
contrast with the sine wave modes of linear Fourier anal-
ysis. All solutions to KdV may be written as a linear sum

of cnoidal waves plus nonlinear interactions. The nonlin-
ear interactions are contained in the off-diagonal terms of
the Riemann matrix. Since the cnoidal waves depend on
their modulus, m, which varies between 0 and 1, the non-
linear modes of KdV can be sine waves (m ∼ 0), Stokes
waves (m ∼ 0.5) and solitons (m ∼ 1); as the modulus is
increased from 0 to 1 the cnoidal wave varies smoothly
from a sine wave to a Stokes wave to a soliton. The more
nonlinear modes the KdV equation has in a particular
application, the more terms we need to sum in the theta
function, i.e. ∼ 10N . Theta functions are therefore a
challenge to compute (Osborne [1995] [2002]).

To solve the Cauchy problem for the KdV equation
we need to find the solution to the equation, η(x, t), for
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a given initial condition η(x, 0). To do this we need to
be able to compute the Bjk, kn, ωj and φj from η(x, 0).
A practical procedure for doing this is given elsewhere
(Osborne [1995]). A major goal of the present paper
is to provide estimates of the Bjk on a physical basis,
by comparing the IST to second order wave theory, see
Section IIIC.

B. The Kadomtsev-Petviashvili Equation

The Kadomtsev-Petviashvili equation (Kadomtsev-
Petviashvili [1973]), which describes the nonlinear dy-
namics of directionally spread surface waves in shallow
water, is written:

(ηt + coηx + αηηx + βηxxx)x + γηyy = 0 (13)

where the coefficients co, α, β are the same as in the KdV
equation above and γ = co/2. The wave field also de-
pends on the y coordinate, η(x, y, t). Assuming periodic
boundary conditions, η(x, y, t) = η(x+Lx, y +Ly, t), the
solution to KP has the form:

η(x, y, t) = 2
λ∂xx ln θ(x, y, t) =

= 2
λ

[(

θ(x, y, t)θxx(x, y, t) − θ2
x(x, y, t)

)

/θ2(x, y, t)
]

(14)
where

θ(x, y, t) =
∞
∑

m1=−∞

∞
∑

m2=−∞
...

∞
∑

mN=−∞
e
− 1

2

N
P

j=1

N
P

k=1

mjmkBjk

×e
i

N
P

j=1

mjkjx+i
N
P

j=1

mj ljy−i
N
P

j=1

mjωjt+i
N
P

j=1

mjφj

(15)
The x and y wave numbers are given by kj = 2πj/Lx

and lj = 2πj/Ly for periodic boundary conditions. As
before the number of nested sums in the theta function,
N , provides the number of nonlinear modes or cnoidal

waves in the IST spectrum. Here each diagonal element,
Bnn, corresponds to a wave number pair [kn, ln] which
specifies the direction of a particular cnoidal wave. In-
teractions among components at these wave numbers are
contained in the off-diagonal terms, Bmn, m 6= n, of the
Riemann matrix. Thus the general periodic solutions of
the KP equation consist of a linear superposition of direc-

tionally spread cnoidal waves plus nonlinear interactions

among them.
The explicit expression for the solution of the KP equa-

tion which best illustrates these ideas can be obtained by
combing (14), (15) [11]:

η(x, y, t) =

N
∑

n=1
ancn2{[K(m)/π](knx + lny − ωnt + φn|mn)}+

+ηint(x, y, t)
(16)

Eq. (16) is physically interpreted as the sum of N
cnoidal-wave spectral components (the basis functions
of nonlinear spectral theory) plus nonlinear interactions
among the cnoidal waves (ηint(x, y, t), see [11] for an ex-
plicit expression for the KdV equation). Here cn(knx +
lny −ωnt|mn) is the classical Jabcobian elliptic function
[1] and mn is its modulus (0 6 mn < 1). The cnoidal
wave amplitudes, an, are graphed as a function of fre-
quency and direction; this graph is known as the nonlin-

ear directional spectrum. The an are computed from the
respective nomes, qn = exp(−Bnn/2), using the diagonal
elements of the Riemann matrix, Bnn [1]:

an =
4k2

n

λ

∞
∑

m=1

mqm
n

1 − q2m
n

(17)

The Ursell number of a cnoidal wave, Un = 3an/4k2h3,
is given in terms of the modulus, mn, by:

mnK2(mn) = 6π2an/4k2
nh3 = 2π2Un (18)

K(m) is the real quarter-period of the elliptic function.
Therefore the modulus, mn, and the Ursell number,
Un, are two equally good parameters for describing the
(Stokes-type) nonlinearity in a cnoidal wave.

The soliton occurs in the limit as mn → 1 and therefore
in the numerical work below we will consider a cnoidal

wave spectral component to be a soliton provided that mn

is sufficiently near one. A soliton gas [15] is here defined
as a wave train for which a large number of the diag-
onal elements of the Riemann matrix are so small that
their modulus is near one, i.e. the spectrum is soliton

dominated. In highly nonlinear cases soliton dominance
typically occurs in a band from low to high frequency ex-
tending across most of the spectrum. For example, from
an experimental point of view we speak of data which is
soliton dominated as a soliton gas.

C. Truncation of IST Theory to Second Order

Theory

As pointed out above the theta function contains all
possible sums and differences of the wave numbers (and
frequencies), including pairs of wave numbers, triples,
quadruples, etc. Typically one sums over ∼ 10N terms,
where N is the number of cnoidal waves in the spec-
trum. However, second order theory provides only sums
and differences of pairs of wave numbers. Therefore to
make a comparison between the two theories we need to
truncate the theta series to only sums and differences of
pairs of wave numbers. To this end we take a particular
partial sum of the theta function, summing only terms
from −1 to 1, rather than −∞ to ∞. Stated this way
the truncation seems quite drastic, and indeed this is the
case, but as we shall see this procedure leads directly to
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second order theory in shallow water. Hence we take:

θ(x, y, t) ∼=
1
∑

m1=−1

1
∑

m2=−1
...

1
∑

mN=−1

×e
− 1

2

N
P

j=1

N
P

k=1

mjmkBjk

e
i

N
P

j=1

mjXj

(19)

where Xn = knx − ωnt + φn for the KdV equation and
Xn = knx + lny − ωnt + φn for the KP equation. Ex-
panding this expression and truncating at second order
we have:

θ(x, y, t) ∼= 1 + 2
N
∑

n=1
e−

1
2Bnn cos[Xn]+

+2
N
∑

m=1

N
∑

n=1
e−

1
2 (Bmm+2Bmn+Bnn) cos[Xm + Xn]+

+2
N
∑

m=1

N
∑

n=1
e−

1
2 (Bmm−2Bmn+Bnn) cos[Xm − Xn]+...

(20)
Higher order terms include higher harmonics and triples,
quadruples, etc. of the wave numbers, but we neglect
these higher sums and differences of the wave number
components in order to compare directly to second order
theory. Assume the second order terms are small and
write ln(1 + a) ∼= a − a2/2, which gives

ln θ(x, y, t) ∼= 2
N
∑

n=1
qn cos[Xn]+

+
N
∑

m=1

N
∑

n=1
G+

mnqmqn cos[Xm + Xn]+

+
N
∑

m=1

N
∑

n=1
G−

mnqmqn cos[Xm − Xn]+...

(21)

where qn = exp (−Bnn/2) is the nome and

G+
mn = 2e−Bmn − 1 (22)

G−
mn = 2eBmn − 1 (23)

The second spatial derivative of this expression gives the
surface elevation to second order

η(x, y, t) ∼= 4
λ

N
∑

n=1
k2

nqn cos[Xn]+

+ 2
λ

N
∑

m=1

N
∑

n=1

(km + kn)2G+
mnqmqn cos[Xm + Xn]+

+ 2
λ

N
∑

m=1

N
∑

n=1
(km − kn)2G−

mnqmqn cos[Xm − Xn]+...

(24)
The first term in the above expression (24) is just the
usual linear Fourier directional spectrum and is formally

equivalent to the first term in second order theory (1).
Each of the amplitude terms, an, in the linear Fourier
series corresponds to a single wave number pair kn, ln in
the wave number plane in two dimensions and therefore
an vs kn, ln constitutes the linear directional spectrum,
a result which is well known. The expression (24) can
be compared to second-order theory to establish the Rie-
mann matrix in terms of the wave number and frequency.
We thus compare (1) to (24) and find

an =
4

λ
k2

ne−
1
2Bnn =

4

λ
k2

nqn (25)

amanK+
mn =

8

λ
(km + kn)2G+

mnqmqn (26)

amanK−
mn =

8

λ
(km − kn)2G−

mnqmqn (27)

The first of these expressions (25) can be inverted and
provides us with the diagonal elements of the Riemann
matrix, Bnn. We thus see that, to second order, the
diagonal elements Bnn are directly related to the linear
Fourier coefficients, an. Additionally, given the expres-
sions for K+

mn and K−
mn in shallow water theory (3), (4),

the second and third of the above two equations can be
solved for the off-diagonal terms, i.e. from (26) and (27)
we find:

Bmn = −1

2
ln

[

J+
mn

J−
mn

(

km − kn

km + kn

)2
]

; m 6= n (28)

where

J+
mn = K+

mn +
λ

2

(

km + kn

kmkn

)2

(29)

J−
mn = K−

mn +
λ

2

(

km − kn

kmkn

)2

(30)

This is the leading order expression for the Riemann ma-

trix for directionally spread wave trains. Note that, in
this approximation, the off-diagonal terms (28) depend
only on the wave number and frequency, not on the am-
plitudes of the waves. Instead the diagonal terms (25)
also depend directly on the wave amplitudes.

In the case of the KdV equation we have the shallow
water limit, for which there is no directional spreading
and we find:

J+
mn

J−
mn

∼= 1 (31)

This then gives the following spectral matrix:

Bnn = −2 ln

(

λan

4k2
n

)

(32)
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Bmn = −1

2
ln

[

(

km − kn

km + kn

)2
]

; m 6= n (33)

These results agree with those of Section IV which dis-
cuss the Schottky uniformization approach for obtaining
periodic solutions to the KP equation. Eqs. (32) and
(33) are the fundamental leading order approximations
for the Riemann matrix for unidirectional shallow water
waves.

Other useful relations are (combine (25) with (26),
(27)):

K+
mn =

λ

2

(

km + kn

kmkn

)2

G+
mn; m 6= n (34)

K−
mn =

λ

2

(

km − kn

kmkn

)2

G−
mn; m 6= n (35)

Taking the ratio of these last two equations allows us to
solve for the off-diagonal terms, a result which reproduces
(28) above. Taking instead the product of equations (34),
(35) yields

K+
mnK−

mn =

(

λ

4

)2 [

(km + kn)(km − kn)

k2
mk2

n

]2

G+
mnG−

mn

(36)
The interaction (skewness) kernal is a useful measure of
the second order interactions as discussed by Forristall
[2000]:

1
4 (K+

mn + K−
mn) =

= λ
8

[

(km+kn)2G+
mn+(km−kn)2G−

mn

k2
mk2

n

]
(37)

Note that this expression has been written in terms of
the Riemann matrix since G±

mn = G±
mn(Bmn).

In all of the formulas above it is worth noting that for
periodic boundary conditions (often used for data anal-
ysis and for numerical modeling purposes) we use the
commensurable wave numbers: kn = 2πn/L. In this
case the following expression is seen to simplify:

km − kn

km + kn
=

m − n

m + n
(38)

IV. COMPUTATION OF DIRECTIONALLY

SPREAD WAVE TRAINS IN SHALLOW WATER

A procedure known as Schottky uniformization al-
lows us to get all non-singlular, periodic solutions of the
KP equation in a straightforward manner (Baker [1898];
Bobenko [1989]; Osborne, unpublished). Here we review
the method and discuss results important to the main
body of this paper.

For (14, 15) to constitute a solution to the KP equa-
tion one must compute the following formulas for the

wave numbers, frequencies and Riemann matrix in terms
of Poincaré series as a function of uniformization pa-

rameters An, µn, n = 1, N . To give a physical interpre-
tation of these parameters it is enough to remember that
at leading order the µn are related to the diagonal ele-
ments of the Riemann matrix (or the amplitudes of the
cnoidal waves) and the An (complex numbers) are related
to the wave numbers kn, ln, n = 1, N (real numbers); the
exact relationships are now given among these parame-
ters for the wavenumbers, frequencies and Riemann ma-
trix. In the formulas below the σ are linear fractional
transformations in terms of the uniformization parame-
ters, σn = σn(An, µn). The summations given below are
group theoretic, use standard group theory notation, and
include the identity, σ = I.

The diagonal elements of the Riemann matrix are:

Bnn = lnµn+
∑

σ∈Gn\G/Gn,σ 6=I

ln

[

(A∗
n − σA∗

n) (An − σAn)

(A∗
n − σAn) (An − σA∗

n)

]

(39)
The off-diagonal elements have the form:

Bmn = 1
2

∑

σ∈Gn\G/Gn

ln
[

(A∗

m−σA∗

n)(Am−σAn)
(A∗

m−σAn)(Am−σA∗

n)

]

m 6= n
(40)

or alternatively

Bmn = − 1
2 ln

[

(A∗

m−A∗

n)(Am−An)
(A∗

m−An)(Am−A∗

n)

]

+

− 1
2

∑

σ∈Gn\G/Gn,σ 6=I

ln
[

(A∗

m−σA∗

n)(Am−σAn)
(A∗

m−σAn)(Am−σA∗

n)

]

m 6= n

(41)

In the last equation we have brought out the term for
σ = I, the identity, and displayed it before the group
theoretic summation; note that this latter summation
now excludes the identity. The wave numbers have the
form:

kn =
∑

σ∈G/Gn

(σAn − σA∗
n) (42)

ln = h
∑

σ∈G/Gn

[

(σAn)
2 − (σA∗

n)
2
]

(43)

The frequency is

ωn = coko − 4β
∑

σ∈G/Gn

[

(σAn)
3 − (σA∗

n)
3
]

(44)

Separating the identity term from the others leads to
alternative forms for (42)-(44):

kn = (An − A∗
n) +

∑

σ∈G/Gn,σ 6=I

(σAn − σA∗
n) (45)
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ln = h
[

A2
n − A∗2

n

]

+ h
∑

σ∈G/Gn,σ 6=I

[

(σAn)2 − (σA∗
n)2

]

(46)

ωn = coko − 4β
[

A3
n − A∗3

n

]

−

−4β
∑

σ∈G/Gn,σ 6=I

[

(σAn)
3 − (σA∗

n)
3
] (47)

It is not hard to show that only the leading order terms
contribute when the waves have small amplitude. Thus
eqs. (41), (45)-(47) have a small amplitude limit: These
are formulas which are important for the comparison with
second-order theory given herein:

Bnn
∼= lnµn (48)

Bmn
∼= 1

2
ln

[

(A∗
m − A∗

n) (Am − An)

(A∗
m − An) (Am − A∗

n)

]

(49)

kn
∼= An − A∗

n (50)

ln ∼= h
(

A2
n − A∗2

n

)

(51)

ωn = cokn − 4β
[

A3
n − A∗3

n

]

(52)

Assuming that kn, ln are given wave numbers in the plane
we can easily solve (50) and (51), approximately, for An.
Thus, to leading order the Schottky uniformization vari-
ables have the form

An = an + ibn ≃ 1

2

(

ln
hkn

+ ikn

)

(53)

where an is the real part of An and bn is the imaginary
part:

an =
ln

2hkn
; bn =

kn

2
(54)

These are useful results because they point out the one-
to-one relationship between the Schottky uniformization
parameters (An = an + ibn) and the wave number pair
(kn, ln).

Insert An (53) into (49) to obtain the leading order
expressions for the Riemann matrix:

Bmn
∼= 1

2
ln







(km − kn)
2

+
(

knlm−kmln
kmkn

)2

(km + kn)
2

+
(

knlm−kmln
kmkn

)2






; m 6= n

(55)
Note that when ln = 0 this expression reduces to the shal-
low water approximation for (28). Another form, more
compatible with eq. (28), is given by

Bmn
∼= 1

2 ln

[

(km−kn)2

(km+kn)2

(

1+( knlm−kmln
kmkn(km−kn) )

2

1+( knlm−kmln
kmkn(km+kn) )

2

)]

m 6= n

(56)
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FIG. 1: Overhead view of directionally spread sea surface
with 10 degrees of freedom using Riemann theta functions.
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FIG. 2: Surface elevation from directionally spread sea with
10 degrees of freedom using Riemann theta functions.

which suggests

J+
mn

J−
mn

=
1 +

(

knlm−kmln
kmkn(km−kn)

)2

1 +
(

knlm−kmln
kmkn(km+kn)

)2 (57)

in the shallow water limit.
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n kn ln an qn Bnn mn

1 0.04255 0.00000 .02634 .01065 9.0844 0.15669
2 0.04965 0.01986 .07254 .01824 8.0082 0.25322
3 0.04965 -0.01986 .30629 .08361 4.9630 0.74087
4 0.05674 0.01700 .33495 .07194 5.2639 0.68620
5 0.05674 -0.01700 .38295 .07515 5.1765 0.70226
6 0.06383 0.01596 .31352 .05411 5.8335 0.58069
7 0.06383 -0.0160 .34957 .05594 5.7669 0.59295
8 0.07093 0.01419 .15434 .02356 7.4966 0.31422
9 0.07093 -0.01419 .06503 .00937 9.3410 0.13921
10 0.07800 0.0000 .04344 .00523 10.0507 0.0803

TABLE I: Table of wave numbers, amplitudes, nomes, diago-
nal elements of the period matrix and moduli of the numerical
simulation in Figs. 1 and 2

V. NUMERICAL PROCEDURES AND

EXAMPLES

The numerical procedure for determining an N degree
of freedom solution to the KP equation is to execute the
following steps: (1) Pick the Riemann matrix diagonal
elements, Bnn, and then compute the cnoidal wave am-
plitudes, an, by (17) (1 ≤ n ≤ N). Alternatively pick the
amplitudes an and estimate the diagonal elements Bnn

by inverting (17). Also choose a set of arbitrary phases,
φn, one for each cnoidal wave. (2) Choose the set of
wave numbers kn, ln corresponding to each of the cnoidal
waves selected in step (1). (3) Given the Bnn and kn, ln
use formulas (48) and (53) to estimate the uniformiza-
tion parameters An, µn. (4) Treat (39), (42) and (43)
as nonlinear equations which, given Bnn and kn, ln, one
solves for the An, µn iteratively by standard techniques
beginning with the starting values estimated in step (3).
When the iterations give precise enough values of An, µn

(i.e. when their values no longer change significantly be-
tween iterations) go to the next step. (4) Compute the

off-diagonal elements of the Riemann matrix by (41) and
the frequencies by (44). We now have available all ele-
ments of the period matrix, the wave numbers, the fre-
quencies and the phases. This is sufficient information
to use formulas (14), (15) to compute the solution to the
KP equation.

We now show a numerical examples of a realization
of a random, directionally spread wave train for the KP
equation. This example is shown in Fig. 1 which shows
the simulated sea state as seen from above. Fig. 2 shows
the simulated sea surface for the simulation. The wa-
ter depth is h = 8 m. There are 10 components in the
spectrum which has Hs = 0.4 m.

VI. SUMMARY

We have presented a new approach which uses inverse
scattering theory for the simulation of nonlinear, direc-
tional wave trains. To provide physical insight we have
compared IST to second order theory and derived many
of the results necessary for estimates of IST parameters
directly from second order theory. We then computed
a numerical example of a nonlinear, directionally spread
random wave train which is highly nonlinear, far beyond
the ability of second order theory to compute. We view
these new methods as an efficient way for studying the
behavior of highly nonlinear, directional surface waves in
shallow water.
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