Energy-Flux Balances and Source Term Parameterizations

Will Perrie^{1,3}, Don Resio², Adhi Susilo³

¹Bedford Institute of Oceanography, Canada ²ERDC-Coastal & Hydraulics Lab, USA ³Dalhousie University, Canada

Objectives

- 1. nonlinear 4-wave interactions
- 2. a look at energy flux balances
- 3. relation to source term parameterizations
- 4. challenges for improvements ...

1. introduction: energy – flux balances

Review

$$dE(f) / dt = SnI + Sin + Sds$$

Quadruplet wave interactions determined by locus

 $\omega_1 + \omega_2 = \omega_3 + \omega_4$ $k_1 + k_2 = k_3 + k_4$

replaced by DIA as $\omega_1 = \omega_2 = \omega$ $\omega_3 = \omega(1+\lambda) \quad \omega_4 = \omega(1-\lambda)$ where $\lambda = 0.25$ and $q_3 = 11.5^\circ$ and $q_4 = -33.6^\circ$

 \Rightarrow Many fewer interactions are selected

Review Snl = boltzmann integral

• Snl =2 $\int dk_3 T(k_1,k_3)$

Tracy and Resio, 1982

k1_x=1 $q_3 = 11.5^{\circ}$ k1_y=0 $q_4 = -33.6^{\circ}$ λ = 0.25

 $f_1 / f_p = 2.0$

k1_x=1 $q_3 = 11.5^{\circ}$ k1_y=0 $q_4 = -33.6^{\circ}$ $\lambda = 0.25$

 $f_1 / f_p = 1.0$

k1_x=1 $q_3 = 11.5^{\circ}$ k1_y=0 $q_4 = -33.6^{\circ}$ λ = 0.25

 $f_1 / f_p = .95$

k1_x=1 $q_3 = 11.5^{\circ}$ k1_y=0 $q_4 = -33.6^{\circ}$ λ = 0.25

 $f_1 / f_p = .82$

Coupling coefficients

Review

Selected C values....

$$f_1 = .95 \text{ and } f_3 / f_p = n \times 7 \dots$$

Impacts on SnI computations

For simple SWAMP-2 type waves DIA is reasonable approximation....

DIA for standard JONSWAP spectrum (from Hasselmann et al. 1985)

Other examples ..

Simple peak spectrum

Simple peak spectrum

Double-peaked spectrum

Review

$$T(k_1,k_3) = \oint ds J^{-1} C^2 D(n_1,n_2,n_3,n_4) \theta$$

$$G(P_A) = \int \oint ds \dots H_{3A} H_{A1} dk_3 dk_1$$

Heaviside functions

$$H(x) = {}^{1 \text{ when } x = 0}_{0 \text{ when } x < 0}$$

$$H_{3A} = H(|k_{3}| - |k(?_{A})|) \qquad \dots \text{ Etc.}$$

Variation of fo with wave maturity

Variation of fo with wave maturity

3. relation to source term parameterizations

f/fp

Evaluation using standard source terms

Normalized F(k) with JONSWAP-type input: a = 0.01, U10 = 15 m/s, fp = 0.1, ? = 3 RTW-erdc for SnI; WAM3 Sin + Sds 1-hr simulation

source terms adjustments ... !

4. challenges for improvements

For a and "*n*" results ... issues !

WAM3 Sin + Sds give one family of curves, T-C give another; results not dependent on DIA or RTW-ww3

WAM3 Sin + Sds give one family of curves, T-C give another; results not dependent on DIA or RTW-ww3

DIFFERENCES in slopes compared to JONSWAP, as a function of t ... !

WAM3 Sin + Sds give one family of curves, T-C give another; results not dependent on DIA or RTW-ww3

DIFFERENCES in slopes wrt JONSWAP, as a function of x ... !

Offset for RTW-erdc + WAM3 source terms

conclusions

- 1. Serious limitations in DIA (RTW-ww3) for simple peaked or double peaked / sheared spectra (tail, low-*f* distortion)
- 2. DIA impacts f_o the null frequency for equilibrium range – which defines energy retained, detailed balance...
- 3. Detailed balance WAM3 and T-C source terms can support equilibrium range, with tuning factors
- 4. T-C and WAM3 Sin+ Sds determine values for a and "n", <u>not</u> DIA or RTW-ww3: and differ from JONSWAP / Toba
- Fetch / duration curves dominated by WAM3 or T-C source terms, <u>not</u> DIA or RTW-ww3 formulation
- 6. "" " curves too shallow and not self-similar.
- 7. RTW-erdc + WAM3 has improved slope, but offset