THE EFFECTS OF HINDCASTED WAVES ON COASTAL STORM WATER LEVELS DURING THE BLIZZARD OF 2003

by Jennifer L. Irish Rafael Cañizares William G. Grosskopf Brian P. Williams

8th International Workshop on Wave Hindcasting and Forecasting 18 November 2004

EFFECT OF WAVES ON WATER LEVELS OUTLINE

- Background and Project Purpose
- Modeling Methodology
- Blizzard of 2003 Simulation
- Bay Water Level Contributions
- Conclusions

EFFECT OF WAVES ON WATER LEVELS BACKGROUND AND PROJECT PURPOSE

Water Levels for Economic Analyses and Coastal Design:

- Astronomical Tide
- Storm Wind Fields
- Barometric Pressure
- Wave Setup
- Barrier Island Overwash
- Barrier Island Breaching

EFFECT OF WAVES ON WATER LEVELS MODELING METHODOLOGY

EFFECT OF WAVES ON WATER LEVELS MODELING METHODOLOGY: WIND HINDCASTS

• PBL (Thompson and Cardone, 1996)

- Tropical storms
- Wind speed and direction
- Barometric pressure
- 30-minute, 0.0625°x0.0625°

• IKOA (Cardone et al., 1995):

- Extratropical storms
- Wind speed and direction
- 3-hour, 0.625°x0.833°

• NCEP:

- Extratropical storms
- Barometric pressure

EFFECT OF WAVES ON WATER LEVELS MODELING METHODOLOGY: WAVE HINDCASTS

• WISWAVE (Resio and Perrie, 1989; Hubertz, 1992)

- Tropical and extratropical storms
- Hourly directional spectra at 30-m depth
- Nested grid
 - 0.083° resolution

EFFECT OF WAVES ON WATER LEVELS MODELING METHODOLOGY: OCEAN WATER LEVEL

• ADCIRC (Luettich et al., 1992):

- Tidal potential for 7 constituents
- Wind stress
- Barometric pressure
- Grid Development:
 - Finite element
 - Variable resolution

• Model Bathymetry:

- SHOALS surveys
- Condition surveys
- GEODAS (NOAA)
- NOAA charts

EFFECT OF WAVES ON WATER LEVELS MODELING METHODOLOGY: NEARSHORE WAVES

• HISWA (Holthuijsen et al., 1989):

- Wave propagation
- Wave refraction and shoaling:
- bathymetry • currents Wave breaking I27J09 I23J09 125J0 121, 108 HARMANIAM ALIN MILLER. S. 1810 Wiswave output 116,06 112J06 914 J c**HISWA** input **Regional Grid 250 x 50 m²** Local Grids 25 x 10 m² 109, J0, 5 Inlet Grids 20 x 10 m² 105J04

EFFECT OF WAVES ON WATER LEVELS MODELING METHODOLOGY: BAY WATER LEVEL

• DELFT3D-FLOW (WL| Delft Hydraulics, 2001):

- Tidal potential for 7 constituents
- Wind stress
- Barometric pressure
- Radiation stress

• Grid Development:

- Finite difference
- Curvilinear

EFFECT OF WAVES ON WATER LEVELS BLIZZARD OF 2003

• February 2003 (President's Day)

- Peak winds: 20 m/s
- Ocean storm surge: 0.5 m
- Peak offshore wave height: 6 m
- Duration: 1.5 days

http://www.capemaytimes.com/cape-may/blizzard.htm

EFFECT OF WAVES ON WATER LEVELS BLIZZARD OF 2003: METEOROLOGY

EFFECT OF WAVES ON WATER LEVELS BLIZZARD OF 2003: METEOROLOGY

NDBC Buoy

EFFECT OF WAVES ON WATER LEVELS BLIZZARD OF 2003: OFFSHORE WAVES

EFFECT OF WAVES ON WATER LEVELS BLIZZARD OF 2003: OCEAN WATER LEVEL

EFFECT OF WAVES ON WATER LEVELS BLIZZARD OF 2003: BAY WATER LEVEL

EFFECT OF WAVES ON WATER LEVELS BAY WATER LEVEL CONTRIBUTIONS

EFFECT OF WAVES ON WATER LEVELS BAY WATER LEVEL CONTRIBUTIONS

EFFECT OF WAVES ON WATER LEVELS BAY WATER LEVEL CONTRIBUTIONS

STORM SURGE MODELING CONCLUSIONS

- High-quality wind and wave hindcasting essential for accurate water level simulation
- Ocean wave setup propagation into bays contributes to bay water level
- Modeling strategy adopted for south shore of Long Island
 Economic analyses
 Engineering design

